Yan Han, Feng Zexin, Qin Peixin, Zhou Xiaorong, Guo Huixin, Wang Xiaoning, Chen Hongyu, Zhang Xin, Wu Haojiang, Jiang Chengbao, Liu Zhiqi
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Adv Mater. 2020 Mar;32(12):e1905603. doi: 10.1002/adma.201905603. Epub 2020 Feb 11.
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach for achieving ultralow power spintronic devices via suppressing Joule heating. Here, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, is comprehensively reviewed. Various emergent topics such as the Néel spin-orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, 2D magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons is highlighted. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.
近年来,反铁磁自旋电子学领域取得了长足进展。电场控制是一种通过抑制焦耳热来实现超低功耗自旋电子器件的有前景的方法。本文全面综述了前沿研究,包括利用应变、离子液体、介电材料和电化学离子迁移对反铁磁自旋电子器件进行电场调制。探讨了各种新兴主题,如奈尔自旋轨道转矩、手性自旋电子学、拓扑反铁磁自旋电子学、各向异性磁电阻、存储器件、二维磁性以及关于反铁磁体的磁离子调制。总之,强调了实现高质量室温反铁磁隧道结、反铁磁自旋逻辑器件和人工反铁磁神经元的可能性。预计这项工作将提供一个恰当且具有前瞻性的视角,推动该领域的快速发展。