Guo Huixin, Feng Zexin, Yan Han, Liu Jiuzhao, Zhang Jia, Zhou Xiaorong, Qin Peixin, Cai Jialin, Zeng Zhongming, Zhang Xin, Wang Xiaoning, Chen Hongyu, Wu Haojiang, Jiang Chengbao, Liu Zhiqi
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
Adv Mater. 2020 Jul;32(26):e2002300. doi: 10.1002/adma.202002300. Epub 2020 May 25.
One of the main bottleneck issues for room-temperature antiferromagnetic spintronic devices is the small signal read-out owing to the limited anisotropic magnetoresistance in antiferromagnets. However, this could be overcome by either utilizing the Berry-curvature-induced anomalous Hall resistance in noncollinear antiferromagnets or establishing tunnel-junction devices based on effective manipulation of antiferromagnetic spins. In this work, the giant piezoelectric strain modulation of the spin structure and the anomalous Hall resistance in a noncollinear antiferromagnetic metal-D0 hexagonal Mn Ga-is demonstrated. Furthermore, tunnel-junction devices are built with a diameter of 200 nm to amplify the maximum tunneling resistance ratio to more than 10% at room-temperature, which thus implies significant potential of noncollinear antiferromagnets for large signal-output and high-density antiferromagnetic spintronic device applications.
室温反铁磁自旋电子器件的主要瓶颈问题之一是,由于反铁磁体中有限的各向异性磁阻,导致信号读出较小。然而,这一问题可以通过利用非共线反铁磁体中贝里曲率诱导的反常霍尔电阻,或基于反铁磁自旋的有效操控来建立隧道结器件加以克服。在这项工作中,展示了非共线反铁磁金属-D0 六角形 Mn Ga 中自旋结构的巨大压电应变调制和反常霍尔电阻。此外,构建了直径为 200 nm 的隧道结器件,以在室温下将最大隧穿电阻比放大到 10%以上,这意味着非共线反铁磁体在大信号输出和高密度反铁磁自旋电子器件应用方面具有巨大潜力。