Suppr超能文献

一种用于检测多发性硬化症病情进展的临床护理算法:RetratEMos项目

A Clinical Care Algorithm for Detecting Progression in Multiple Sclerosis: RetratEMos Project.

作者信息

Meca-Lallana José E, Robles René, Landete Lamberto, Téllez Nieves, García-Domínguez José M, Garcés Pilar, Costa-Frossard Lucienne

机构信息

Clinical Neuroimmunology Unit, Neurology Department, "Virgen de la Arrixaca" Clinical University Hospital (IMIB-Arrixaca), Murcia, ESP.

Multiple Sclerosis and Clinical Neuroimmunology, NICEM Cathedral, UCAM-San Antonio Catholic University, Murcia, ESP.

出版信息

Cureus. 2024 Nov 19;16(11):e74001. doi: 10.7759/cureus.74001. eCollection 2024 Nov.

Abstract

OBJECTIVE

The diagnosis of secondary progressive multiple sclerosis (SPMS) is often established retrospectively leading to a delay in detection. This work presents a clinical care algorithm that aims to facilitate the recognition of the secondary progressive phase of the disease, analyzing its usefulness and the feasibility of its implementation in routine clinical practice.

METHODS

The algorithm was developed in four phases: 1) choice of validated diagnostic tools for the detection of progression; 2) assessment of these tools based on experience of use, applicability, time consumed, perceived usefulness and suitability for a profile of a patient in transition to SPMS; 3) framework and final sequence of application; 4) feasibility evaluation through application in clinical practice.

RESULTS

A hierarchical algorithm was developed with an initial screening phase to detect warning signs and establish suspicion of progression (which included the tests "Your Multiple Sclerosis (Your MS)," "MSProDiscuss," and "Nomogram") and a second phase conditional on a positive result in the first, including a functional examination with the Symbol Digit Modalities Test (SDMT), 9-Hole Peg Test (9-HPT), and Timed 25-Foot Walk (T25FW) tools. The algorithm was applied to 373 patients with Expanded Disability Status Scale (EDSS) ≥ 2. The mean time spent per patient in the screening was eight minutes and 20.4 minutes for the complete algorithm. The perceived usefulness of the process by the neurologists was 3.1 (range of 1-4, with 4 being the maximum). In 46% of the cases, the algorithm detected the need for additional functional exploration.

CONCLUSIONS

From our experience, this clinical care algorithm is effective and feasible for detecting progression in MS, although its implementation requires proper organization and can be uneven depending on the resources of each center.

摘要

目的

继发进展型多发性硬化(SPMS)的诊断通常是回顾性确立的,这导致检测延迟。本研究提出了一种临床护理算法,旨在促进对疾病继发进展期的识别,分析其在常规临床实践中的实用性和实施可行性。

方法

该算法分四个阶段开发:1)选择用于检测病情进展的经过验证的诊断工具;2)根据使用经验、适用性、耗时、感知有用性以及对处于向SPMS转变阶段患者的适用性对这些工具进行评估;3)应用的框架和最终顺序;4)通过在临床实践中的应用进行可行性评估。

结果

开发了一种分层算法,初始筛查阶段用于检测警示信号并确定病情进展的怀疑(包括“您的多发性硬化(Your MS)”“MSProDiscuss”和“列线图”测试),第二阶段取决于第一阶段结果为阳性,包括使用符号数字模式测试(SDMT)、9孔插钉试验(9-HPT)和25英尺计时步行试验(T25FW)工具进行功能检查。该算法应用于373例扩展残疾状态量表(EDSS)≥2的患者。筛查时每位患者平均花费时间为8分钟,完整算法为20.4分钟。神经科医生对该流程的感知有用性为3.1(范围为1 - 4,4为最高)。在46%的病例中,该算法检测到需要进行额外的功能探索。

结论

根据我们的经验,这种临床护理算法对于检测MS病情进展是有效且可行的,尽管其实施需要适当的组织安排,并且可能因每个中心的资源不同而存在差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48ef/11657311/507f2f0d3c7c/cureus-0016-00000074001-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验