Suppr超能文献

使用决策树对多发性硬化的继发性进展进行准确分类。

Accurate classification of secondary progression in multiple sclerosis using a decision tree.

机构信息

Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden/Department of Mathematics, KTH-Royal Institute of Technology, Stockholm, Sweden.

Faculty of Medicine (Neurology), UBC Hospital, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.

出版信息

Mult Scler. 2021 Jul;27(8):1240-1249. doi: 10.1177/1352458520975323. Epub 2020 Dec 2.

Abstract

BACKGROUND

The absence of reliable imaging or biological markers of phenotype transition in multiple sclerosis (MS) makes assignment of current phenotype status difficult.

OBJECTIVE

The authors sought to determine whether clinical information can be used to accurately assign current disease phenotypes.

METHODS

Data from the clinical visits of 14,387 MS patients in Sweden were collected. Classifying algorithms based on several demographic and clinical factors were examined. Results obtained from the best classifier when predicting neurologist recorded disease classification were replicated in an independent cohort from British Columbia and were compared to a previously published algorithm and clinical judgment of three neurologists.

RESULTS

A decision tree (the classifier) containing only most recently available expanded disability scale status score and age obtained 89.3% (95% confidence intervals (CIs): 88.8-89.8) classification accuracy, defined as concordance with the latest reported status. Validation in the independent cohort resulted in 82.0% (95% CI: 81.0-83.1) accuracy. A previously published classification algorithm with slight modifications achieved 77.8% (95% CI: 77.1-78.4) accuracy. With complete patient history of 100 patients, three neurologists obtained 84.3% accuracy compared with 85% for the classifier using the same data.

CONCLUSION

The classifier can be used to standardize definitions of disease phenotype across different cohorts. Clinically, this model could assist neurologists by providing additional information.

摘要

背景

多发性硬化症(MS)中缺乏可靠的表型转换影像学或生物学标志物,使得当前表型状态的分配变得困难。

目的

作者旨在确定临床信息是否可用于准确分配当前疾病表型。

方法

收集了瑞典 14387 名 MS 患者的临床就诊数据。检查了基于几个人口统计学和临床因素的分类算法。当预测神经病学家记录的疾病分类时,从最佳分类器获得的结果在不列颠哥伦比亚省的独立队列中进行了复制,并与以前发表的算法和三位神经病学家的临床判断进行了比较。

结果

仅包含最近可用扩展残疾量表状态评分和年龄的决策树(分类器)的分类准确率为 89.3%(95%置信区间:88.8-89.8),定义为与最新报告的状态一致。在独立队列中的验证结果为 82.0%(95%置信区间:81.0-83.1)。经过轻微修改的以前发表的分类算法的准确率为 77.8%(95%置信区间:77.1-78.4)。对于 100 名患者的完整病史,三位神经病学家的准确率为 84.3%,而使用相同数据的分类器的准确率为 85%。

结论

分类器可用于在不同队列中标准化疾病表型的定义。在临床上,该模型可以通过提供其他信息来帮助神经病学家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/8227440/2cfa6e4ed490/10.1177_1352458520975323-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验