Araujo Ana Paula Bergamo, Vargas Gabriele, Hayashide Lívia de Sá, Matias Isadora, Andrade Cherley Borba Vieira, de Carvalho Jorge José, Gomes Flávia Carvalho Alcantara, Diniz Luan Pereira
Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Front Cell Neurosci. 2024 Dec 5;18:1496163. doi: 10.3389/fncel.2024.1496163. eCollection 2024.
Brain aging involves a complex interplay of cellular and molecular changes, including metabolic alterations and the accumulation of senescent cells. These changes frequently manifest as dysregulation in glucose metabolism and mitochondrial function, leading to reduced energy production, increased oxidative stress, and mitochondrial dysfunction-key contributors to age-related neurodegenerative diseases.
We conducted experiments on two models: young (3-4 months) and aged (over 18 months) mice, as well as cultures of senescent and control mouse astrocytes. Mitochondrial content and biogenesis were analyzed in astrocytes and neurons from aged and young animals. Cultured senescent astrocytes were examined for mitochondrial membrane potential and fragmentation. Quantitative PCR (qPCR) and immunocytochemistry were used to measure fusion- and fission-related protein levels. Additionally, transmission electron microscopy provided morphological data on mitochondria.
Astrocytes and neurons from aged animals showed a significant reduction in mitochondrial content and a decrease in mitochondrial biogenesis. Senescent astrocytes in culture exhibited lower mitochondrial membrane potential and increased mitochondrial fragmentation. qPCR and immunocytochemistry analyses revealed a 68% increase in fusion-related proteins (mitofusin 1 and 2) and a 10-fold rise in DRP1, a key regulator of mitochondrial fission. Transmission electron microscopy showed reduced perimeter, area, and length-to-diameter ratio of mitochondria in astrocytes from aged mice, supported by elevated DRP1 phosphorylation in astrocytes of the cerebral cortex.
Our findings provide novel evidence of increased mitochondrial fragmentation in astrocytes from aged animals. This study sheds light on mechanisms of astrocytic metabolic dysfunction and mitochondrial dysregulation in brain aging, highlighting mitochondrial fragmentation as a potential target for therapeutic interventions in age-related neurodegenerative diseases.
大脑衰老涉及细胞和分子变化的复杂相互作用,包括代谢改变和衰老细胞的积累。这些变化常常表现为葡萄糖代谢和线粒体功能失调,导致能量产生减少、氧化应激增加以及线粒体功能障碍,而这些是与年龄相关的神经退行性疾病的关键促成因素。
我们在两种模型上进行了实验:年轻(3 - 4个月)和老年(超过18个月)小鼠,以及衰老和对照小鼠星形胶质细胞培养物。分析了老年和年轻动物的星形胶质细胞和神经元中的线粒体含量和生物合成。检测了培养的衰老星形胶质细胞的线粒体膜电位和碎片化情况。使用定量PCR(qPCR)和免疫细胞化学来测量与融合和裂变相关的蛋白质水平。此外,透射电子显微镜提供了线粒体的形态学数据。
老年动物的星形胶质细胞和神经元显示出线粒体含量显著减少以及线粒体生物合成降低。培养的衰老星形胶质细胞表现出较低的线粒体膜电位和线粒体碎片化增加。qPCR和免疫细胞化学分析显示,与融合相关的蛋白质(线粒体融合蛋白1和2)增加了68%,而线粒体裂变的关键调节因子动力相关蛋白1(DRP1)增加了10倍。透射电子显微镜显示,老年小鼠星形胶质细胞中线粒体的周长、面积和长径比降低,大脑皮质星形胶质细胞中DRP1磷酸化水平升高支持了这一结果。
我们的研究结果为老年动物星形胶质细胞中线粒体碎片化增加提供了新证据。这项研究揭示了大脑衰老过程中星形胶质细胞代谢功能障碍和线粒体失调的机制,突出了线粒体碎片化作为与年龄相关的神经退行性疾病治疗干预潜在靶点的作用。