Suppr超能文献

胡齐斯坦省年轻成年人吸烟行为决定因素的建模:一种两级计数回归方法。

Modeling the determinants of smoking behavior among young adults in Khuzestan province: a two-level count regression approach.

作者信息

Satyar Homayoun, Ahmadi Angali Kambiz, Ghorbani Somayeh, Kamyari Naser, Seyedtabib Maryam

机构信息

Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Department of Biostatistics and Epidemiology, School of Health, Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

出版信息

Front Public Health. 2024 Nov 28;12:1449193. doi: 10.3389/fpubh.2024.1449193. eCollection 2024.

Abstract

PURPOSE

This study investigates the determinants of smoking behavior among young adults in Khuzestan province, southwest Iran, using two-level count regression models. Given the high prevalence of smoking-related diseases and the social impact of smoking, understanding the factors influencing smoking habits is crucial for effective public health interventions.

METHODS

We conducted a cross-sectional analysis of 1,973 individuals aged 18-35 years, using data from the Daily Smoking Consumption Survey (DSCS) in Khuzestan province collected in 2023. A variety of count regression models, including Poisson, Negative Binomial, Conway-Maxwell Poisson, and their zero-inflated counterparts, were evaluated. The best-fitting model was selected based on goodness-of-fit indices.

RESULTS

Approximately 90% of participants were non-smokers. Among smokers, the prevalence of light, moderate, and heavy smoking was 47.7, 19.0, and 33.3%, respectively. The two-level Zero-Inflated Conway-Maxwell Poisson (ZICMP) model provided the appropriate fit for the data. Key determinants of daily cigarette consumption included gender, age, education, and Body Mass Index (BMI). Men consumed 3.24 times more cigarettes per day than women. Higher education levels were inversely related to smoking intensity, with MSc/PhD holders having significantly lower smoking rates. Age and BMI also significantly influenced smoking behavior, with younger and obese individuals showing lower smoking rates.

CONCLUSION

The use of advanced count models capable of handling numerous zeros and overdispersion is crucial for accurately analyzing trends in cigarette consumption across different population groups. The results indicate that factors such as older age, lower education levels, and gender differences influence smoking behavior. Therefore, prevention strategies aimed at delaying the onset of smoking, particularly among men, and promoting education among adolescents can effectively reduce smoking rates. However, further research should consider additional socioeconomic variables and encompass a broader age range to enhance the understanding of smoking behavior.

摘要

目的

本研究使用两级计数回归模型,调查伊朗西南部胡齐斯坦省年轻人吸烟行为的决定因素。鉴于吸烟相关疾病的高流行率以及吸烟的社会影响,了解影响吸烟习惯的因素对于有效的公共卫生干预至关重要。

方法

我们对1973名年龄在18 - 35岁的个体进行了横断面分析,使用的是2023年在胡齐斯坦省进行的每日吸烟消费调查(DSCS)的数据。评估了多种计数回归模型,包括泊松模型、负二项式模型、康威 - 麦克斯韦泊松模型及其零膨胀对应模型。根据拟合优度指标选择最佳拟合模型。

结果

约90%的参与者不吸烟。在吸烟者中,轻度、中度和重度吸烟的流行率分别为47.7%、19.0%和33.3%。两级零膨胀康威 - 麦克斯韦泊松(ZICMP)模型对数据提供了合适的拟合。每日香烟消费量的关键决定因素包括性别、年龄、教育程度和体重指数(BMI)。男性每天吸烟量是女性的3.24倍。较高的教育水平与吸烟强度呈负相关,拥有硕士/博士学位的人吸烟率显著较低。年龄和BMI也对吸烟行为有显著影响,年龄较小和肥胖的个体吸烟率较低。

结论

使用能够处理大量零值和过度离散的先进计数模型对于准确分析不同人群的香烟消费趋势至关重要。结果表明,年龄较大、教育水平较低和性别差异等因素会影响吸烟行为。因此,旨在推迟吸烟开始时间,特别是在男性中,并促进青少年教育的预防策略可以有效降低吸烟率。然而,进一步的研究应考虑更多的社会经济变量,并涵盖更广泛的年龄范围,以加深对吸烟行为的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f3f/11657570/6a28f56830ba/fpubh-12-1449193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验