Boussina Aaron, Krishnamoorthy Rishivardhan, Quintero Kimberly, Joshi Shreyansh, Wardi Gabriel, Pour Hayden, Hilbert Nicholas, Malhotra Atul, Hogarth Michael, Sitapati Amy M, VanDenBerg Chad, Singh Karandeep, Longhurst Christopher A, Nemati Shamim
Division of Biomedical Informatics, University of California, San Diego, San Diego.
Department of Quality, University of California, San Diego, San Diego.
NEJM AI. 2024 Oct 24;1(11). doi: 10.1056/aics2400420. Epub 2024 Oct 21.
Hospital quality measures are a vital component of a learning health system, yet they can be costly to report, statistically underpowered, and inconsistent due to poor interrater reliability. Large language models (LLMs) have recently demonstrated impressive performance on health care-related tasks and offer a promising way to provide accurate abstraction of complete charts at scale. To evaluate this approach, we deployed an LLM-based system that ingests Fast Healthcare Interoperability Resources data and outputs a completed Severe Sepsis and Septic Shock Management Bundle (SEP-1) abstraction. We tested the system on a sample of 100 manual SEP-1 abstractions that University of California San Diego Health reported to the Centers for Medicare & Medicaid Services in 2022. The LLM system achieved agreement with manual abstractors on the measure category assignment in 90 of the abstractions (90%; κ=0.82; 95% confidence interval, 0.71 to 0.92). Expert review of the 10 discordant cases identified four that were mistakes introduced by manual abstraction. This pilot study suggests that LLMs using interoperable electronic health record data may perform accurate abstractions for complex quality measures. (Funded by the National Institute of Allergy and Infectious Diseases [1R42AI177108-1] and others.).
医院质量指标是学习型医疗系统的重要组成部分,但报告这些指标可能成本高昂、统计效力不足,且由于评分者间信度差而不一致。大型语言模型(LLMs)最近在医疗相关任务中表现出令人印象深刻的性能,并提供了一种有前景的方法来大规模准确提炼完整病历。为评估这种方法,我们部署了一个基于大型语言模型的系统,该系统摄取快速医疗保健互操作性资源数据,并输出一份完整的严重脓毒症和脓毒性休克管理集束(SEP-1)提炼结果。我们在加利福尼亚大学圣地亚哥分校医疗中心于2022年向医疗保险和医疗补助服务中心报告的100份手动SEP-1提炼样本上测试了该系统。大型语言模型系统在90份提炼结果(90%;κ=0.82;95%置信区间,0.71至0.92)的指标类别分配上与手动提炼者达成了一致。对10例不一致病例的专家审查发现,其中4例是手动提炼引入的错误。这项初步研究表明,使用可互操作电子健康记录数据的大型语言模型可能对复杂质量指标进行准确提炼。(由美国国立过敏与传染病研究所[1R42AI177108-1]等资助。)