Suppr超能文献

用于沸石结构中精确单分子识别的深度学习辅助扫描透射电子显微镜成像

Deep Learning-Enabled STEM Imaging for Precise Single-Molecule Identification in Zeolite Structures.

作者信息

Yang Yaotian, Xiong Hao, Wu Zirong, Luo Zhiyao, Chen Xiao, Wang Xiaonan, Wei Fei

机构信息

Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Ordos Laboratory, Ordos, Inner Mongolia, 017000, China.

出版信息

Adv Sci (Weinh). 2025 Feb;12(6):e2408629. doi: 10.1002/advs.202408629. Epub 2024 Dec 20.

Abstract

Observing chemical reactions in complex structures such as zeolites involves a major challenge in precisely capturing single-molecule behavior at ultra-high spatial resolutions. To address this, a sophisticated deep learning framework tailored has been developed for integrated Differential Phase Contrast Scanning Transmission Electron Microscopy (iDPC-STEM) imaging under low-dose conditions. The framework utilizes a denoising super-resolution model (Denoising Inference Variational Autoencoder Super-Resolution (DIVAESR)) to effectively mitigate shot noise and thereby obtain substantially clearer atomic-resolved iDPC-STEM images. It supports advanced single-molecule detection and analysis, such as conformation matching and elemental clustering, by incorporating object detection and Density Functional Theory (DFT) configurational matching for precise molecular analysis. the model's performance is demonstrated with a significant improvement in standard image quality evaluation metrics including Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The test conducted using synthetic datasets shows its robustness and extended applicability to real iDPC-STEM images, highlighting its potential in elucidating dynamic behaviors of single molecules in real space. This study lays a critical groundwork for the advancement of deep learning applications within electron microscopy, particularly in unraveling chemical dynamics through precise material characterization and analysis.

摘要

在诸如沸石等复杂结构中观察化学反应,面临着在超高空间分辨率下精确捕捉单分子行为的重大挑战。为解决这一问题,已开发出一种复杂的深度学习框架,用于低剂量条件下的集成差分相衬扫描透射电子显微镜(iDPC-STEM)成像。该框架利用去噪超分辨率模型(去噪推理变分自编码器超分辨率(DIVAESR))有效减轻散粒噪声,从而获得明显更清晰的原子分辨iDPC-STEM图像。通过纳入目标检测和密度泛函理论(DFT)构型匹配进行精确分子分析,它支持先进的单分子检测和分析,如构象匹配和元素聚类。该模型在包括峰值信噪比(PSNR)和结构相似性指数测量(SSIM)在内的标准图像质量评估指标上有显著提升,证明了其性能。使用合成数据集进行的测试表明了其稳健性以及对真实iDPC-STEM图像的广泛适用性,突出了其在阐明真实空间中单分子动态行为方面的潜力。这项研究为电子显微镜中深度学习应用的发展奠定了关键基础,特别是在通过精确的材料表征和分析揭示化学动力学方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8a/11809325/9b75f9d9e13d/ADVS-12-2408629-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验