Suppr超能文献

原子分辨 STEM 图像的全变分正则化去噪。

Atomic-resolution STEM image denoising by total variation regularization.

机构信息

Institute of Engineering Innovation, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.

Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan.

出版信息

Microscopy (Oxf). 2022 Oct 6;71(5):302-310. doi: 10.1093/jmicro/dfac032.

Abstract

Atomic-resolution electron microscopy imaging of solid-state material is a powerful method for structural analysis. Scanning transmission electron microscopy (STEM) is one of the actively used techniques to directly observe atoms in materials. However, some materials are easily damaged by the electron beam irradiation, and only noisy images are available when we decrease the electron dose to avoid beam damages. Therefore, a denoising process is necessary for precise structural analysis in low-dose STEM. In this study, we propose total variation (TV) denoising algorithm to remove quantum noise in an STEM image. We defined an entropy of STEM image that corresponds to the image contrast to determine a hyperparameter and we found that there is a hyperparameter that maximizes the entropy. We acquired atomic-resolution STEM image of CaF2 viewed along the [001] direction and executed TV denoising. The atomic columns of Ca and F are clearly visualized by the TV denoising, and atomic positions of Ca and F are determined with the error of ±1 pm and ±4 pm, respectively.

摘要

原子分辨电子显微镜成像技术是一种用于结构分析的强大方法。扫描透射电子显微镜(STEM)是一种常用的直接观察材料中原子的技术。然而,有些材料很容易受到电子束辐照的损坏,当我们为了避免束损伤而降低电子剂量时,只能得到嘈杂的图像。因此,在低剂量 STEM 中进行精确的结构分析需要进行降噪处理。在这项研究中,我们提出了全变差(TV)降噪算法来去除 STEM 图像中的量子噪声。我们定义了一个与图像对比度相对应的 STEM 图像熵来确定超参数,并且发现存在一个可以最大化熵的超参数。我们获得了沿[001]方向观察的 CaF2 的原子分辨 STEM 图像,并执行了 TV 降噪。通过 TV 降噪,可以清晰地观察到 Ca 和 F 的原子列,并且可以确定 Ca 和 F 的原子位置,其误差分别为±1 pm 和±4 pm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验