Suppr超能文献

减轻由C31整合酶在……中的切除活性所引起的基因不稳定性。

Mitigating genetic instability caused by the excision activity of the C31 integrase in .

作者信息

Duan Yadan, Liu Zhangliang, Huang Xiaofang, Xu Lu, Wang Xianxue, Liu Hao, Xie Zhoujie

机构信息

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.

Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China.

出版信息

Appl Environ Microbiol. 2025 Jan 31;91(1):e0181224. doi: 10.1128/aem.01812-24. Epub 2024 Dec 20.

Abstract

Over the past three decades, the integrase (Int) from phage C31 has become a valuable genome engineering tool across various species. C31 Int was thought to mediate unidirectional site-specific integration ( × to and ) in the absence of the phage-encoded recombination directionality factor (RDF). However, we have shown in this study that Int can also catalyze reverse excision ( × to and ) at low frequencies in and , causing genetic instability in engineered strains. To address this issue, we developed a two-plasmid co-conjugation (TPC) system. This system consists of an -containing integration vector and an Int expression suicide plasmid, both carrying to facilitate efficient conjugation transfer from to . Using the TPC system, genetically stable integrants free of Int can be generated quickly and easily. The indigoidine-producing strains generated by the TPC system exhibited higher genetic stability and production efficiency compared to the indigoidine-producing strain generated by the conventional integration system, further demonstrating the utility of the TPC system in the field of biotechnology. We anticipate that the strategies presented here will be widely adopted for stable genetic engineering of industrial microbes using phage integrase-based integration systems.IMPORTANCELarge serine recombinases (LSRs), including the bacteriophage C31 integrase, were previously thought to allow only unidirectional site-specific integration ( × to and attR). Our study is the first to show that the C31 integrase can also catalyze a low-efficiency reverse excision reaction in and without the involvement of the phage-encoded recombination directionality factor (RDF). The genetic instability caused by the low excisionase activity of the C31 integrase is a major challenge for biotechnological applications. Our study addresses this issue by developing a two-plasmid co-conjugation (TPC) system that facilitates the construction of Int-deficient genomic engineering strains. The Int-deficient integrants produced by this TPC system exhibit strong genetic stability for introduced genes and maintain stable production traits even in the absence of selection pressure, making them highly valuable for industrial applications.

摘要

在过去三十年里,来自噬菌体C31的整合酶(Int)已成为一种适用于多种物种的重要基因组工程工具。在没有噬菌体编码的重组方向性因子(RDF)的情况下,C31 Int被认为介导单向位点特异性整合(从attP到attB和attR)。然而,我们在本研究中表明,Int在大肠杆菌和酿酒酵母中也能以低频率催化反向切除(从attB到attP和attL),从而导致工程菌株中的基因不稳定。为了解决这个问题,我们开发了一种双质粒共接合(TPC)系统。该系统由一个含attB的整合载体和一个Int表达自杀质粒组成,两者都携带mob基因以促进从大肠杆菌到酿酒酵母的高效接合转移。使用TPC系统,可以快速轻松地产生不含Int的遗传稳定整合体。与传统整合系统产生的产靛蓝素菌株相比,TPC系统产生的产靛蓝素菌株表现出更高的遗传稳定性和生产效率,进一步证明了TPC系统在生物技术领域的实用性。我们预计,本文提出的策略将被广泛应用于使用基于噬菌体整合酶的整合系统对工业微生物进行稳定的基因工程改造。

重要性

大型丝氨酸重组酶(LSRs),包括噬菌体C31整合酶,以前被认为只允许单向位点特异性整合(从attP到attB和attR)。我们的研究首次表明,C31整合酶在没有噬菌体编码的重组方向性因子(RDF)参与的情况下,也能在大肠杆菌和酿酒酵母中催化低效的反向切除反应。C31整合酶的低切除酶活性导致的基因不稳定是生物技术应用中的一个主要挑战。我们的研究通过开发一种双质粒共接合(TPC)系统来解决这个问题,该系统有助于构建不含Int的基因组工程菌株。由该TPC系统产生的不含Int的整合体对导入基因表现出很强的遗传稳定性,即使在没有选择压力的情况下也能保持稳定的生产性状,使其在工业应用中具有很高的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b44/11784100/3adc9dcc8cd4/aem.01812-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验