Garcia Quesada Maria, Peterson Meagan E, Bennett Julia C, Hayford Kyla, Zeger Scott L, Yang Yangyupei, Hetrich Marissa K, Feikin Daniel R, Cohen Adam L, von Gottberg Anne, van der Linden Mark, van Sorge Nina M, de Oliveira Lucia H, de Miguel Sara, Yildirim Inci, Vestrheim Didrik F, Verani Jennifer R, Varon Emmanuelle, Valentiner-Branth Palle, Tzanakaki Georgina, Sinkovec Zorko Nadja, Setchanova Lena P, Serhan Fatima, Scott Kevin J, Scott J Anthony, Savulescu Camelia, Savrasova Larisa, Reyburn Rita, Oishi Kazunori, Nuorti J Pekka, Napoli Daniela, Mwenda Jason M, Muñoz-Almagro Carmen, Morfeldt Eva, McMahon Kimberley, McGeer Allison, Mad'arová Lucia, Mackenzie Grant A, Eugenia León Maria, Ladhani Shamez N, Kristinsson Karl G, Kozakova Jana, Kleynhans Jackie, Klein Nicola P, Kellner James D, Jayasinghe Sanjay, Ho Pak-Leung, Hilty Markus, Harker-Jones Marcella A, Hammitt Laura L, Grgic-Vitek Marta, Gilkison Charlotte, Gierke Ryan, French Neil, Diawara Idrissa, Desmet Stefanie, De Wals Philippe, Dalby Tine, Dagan Ron, Corcoran Mary, Colzani Edoardo, Chanto Chacón Grettel, Castilla Jesús, Camilli Romina, Ang Michelle, Ampofo Krow, Almeida Samanta C G, Alarcon Pedro, O'Brien Katherine L, Deloria Knoll Maria
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
Lancet Infect Dis. 2025 Apr;25(4):445-456. doi: 10.1016/S1473-3099(24)00588-7. Epub 2024 Dec 17.
Widespread use of pneumococcal conjugate vaccines (PCVs) has reduced vaccine-type invasive pneumococcal disease (IPD). We describe the serotype distribution of IPD after extensive use of ten-valent PCV (PCV10; Synflorix, GSK) and 13-valent PCV (PCV13; Prevenar 13, Pfizer) globally.
IPD data were obtained from surveillance sites participating in the WHO-commissioned Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project that exclusively used PCV10 or PCV13 (hereafter PCV10 and PCV13 sites, respectively) in their national immunisation programmes and had primary series uptake of at least 70%. Serotype distribution was estimated for IPD cases occurring 5 years or more after PCV10 or PCV13 introduction (ie, the mature period when the serotype distribution had stabilised) using multinomial Dirichlet regression, stratified by PCV product and age group (<5 years, 5-17 years, 18-49 years, and ≥50 years).
The analysis included cases occurring primarily between 2015 and 2018 from 42 PCV13 sites (63 362 cases) and 12 PCV10 sites (6806 cases) in 41 countries. Sites were mostly high income (36 [67%] of 54) and used three-dose or four-dose booster schedules (44 [81%]). At PCV10 sites, PCV10 serotypes caused 10·0% (95% CI 6·3-12·9) of IPD cases in children younger than 5 years and 15·5% (13·4-19·3) of cases in adults aged 50 years or older, while PCV13 serotypes caused 52·1% (49·2-65·4) and 45·6% (40·0-50·0), respectively. At PCV13 sites, PCV13 serotypes caused 26·4% (21·3-30·0) of IPD cases in children younger than 5 years and 29·5% (27·5-33·0) of cases in adults aged 50 years or older. The leading serotype at PCV10 sites was 19A in children younger than 5 years (30·6% [95% CI 18·2-43·1]) and adults aged 50 years or older (14·8% [11·9-17·8]). Serotype 3 was a top-ranked serotype, causing about 9% of cases in children younger than 5 years and 14% in adults aged 50 years or older at both PCV10 and PCV13 sites. Across all age and PCV10 or PCV13 strata, the proportion of IPD targeted by higher-valency PCVs beyond PCV13 was 4·1-9·7% for PCV15, 13·5-36·0% for PCV20, 29·9-53·8% for PCV21, 15·6-42·0% for PCV24, and 31·5-50·1% for PCV25. All top-ten ranked non-PCV13 serotypes are included in at least one higher-valency PCV.
The proportion of IPD due to serotypes included in PCVs in use was low in mature PCV10 and PCV13 settings. Serotype distribution differed between PCV10 and PCV13 sites and age groups. Higher-valency PCVs target most remaining IPD and are expected to extend impact.
Bill & Melinda Gates Foundation as part of the WHO Pneumococcal Vaccines Technical Coordination Project.
肺炎球菌结合疫苗(PCV)的广泛使用已降低了疫苗型侵袭性肺炎球菌疾病(IPD)的发病率。我们描述了在全球广泛使用十价PCV(PCV10;Synflorix,葛兰素史克公司)和十三价PCV(PCV13;沛儿13,辉瑞公司)后IPD的血清型分布情况。
IPD数据来自参与世界卫生组织委托开展的肺炎球菌血清型替代与分布评估(PSERENADE)项目的监测点,这些监测点在其国家免疫规划中仅使用PCV10或PCV13(以下分别称为PCV10和PCV13监测点),且首剂接种率至少为70%。使用多项狄利克雷回归方法,按PCV产品和年龄组(<5岁、5 - 17岁、18 - 49岁和≥50岁)分层,估计在引入PCV10或PCV13后5年及以上发生的IPD病例(即血清型分布已稳定的成熟期)的血清型分布。
分析纳入了2015年至2018年期间主要来自41个国家的42个PCV13监测点(63362例病例)和12个PCV10监测点(6806例病例)的病例。监测点大多为高收入地区(54个中有36个[67%]),并采用三剂或四剂加强免疫程序(44个[81%])。在PCV10监测点,PCV10血清型在<5岁儿童的IPD病例中占10.0%(95%CI 6.3 - 12.9),在50岁及以上成年人中占15.5%(13.4 - 19.3),而PCV13血清型分别占52.1%(49.2 - 65.4)和45.6%(40.0 - 50.0)。在PCV13监测点,PCV13血清型在<5岁儿童的IPD病例中占26.4%(21.3 - 30.0),在50岁及以上成年人中占29.5%(27.5 - 33.0)。在PCV10监测点,<5岁儿童中最主要的血清型是19A(30.6%[95%CI 18.2 - 43.1]),50岁及以上成年人中是19A(14.8%[11.9 - 17.8])。血清型3是排名靠前的血清型,在PCV10和PCV13监测点,<5岁儿童中约占9%的病例,50岁及以上成年人中占14%。在所有年龄组以及PCV10或PCV13分层中,高于PCV13的更高价PCV针对的IPD比例,PCV15为4.1 - 9.7%,PCV20为13.5 - 36.0%,PCV21为29.9 - 53.8%,PCV24为15.6 - 42.0%,PCV25为31.5 - 50.1%。所有排名前十的非PCV13血清型都包含在至少一种更高价PCV中。
在成熟的PCV10和PCV13环境中,因使用的PCV所包含血清型导致的IPD比例较低。PCV10和PCV13监测点以及年龄组之间的血清型分布存在差异。更高价PCV针对了大多数剩余的IPD病例,预计将扩大影响范围。
比尔及梅琳达·盖茨基金会,作为世界卫生组织肺炎球菌疫苗技术协调项目的一部分。