Ceaser Regan, Chimphango Annie F A
Chemical Engineering Department, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
Chemical Engineering Department, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
Int J Biol Macromol. 2025 Feb;290:138925. doi: 10.1016/j.ijbiomac.2024.138925. Epub 2024 Dec 18.
Cross-linkages with polysaccharides and lignin compromise hydroxycinnamic acid yields and purity in integrated biorefineries. A two-stage-alkaline-based process was sequentially optimised in a wheat straw (WS) and wheat bran (WB)-based biorefinery setup for selective co-production of hydroxycinnamic acids (p-Coumaric acid & ferulic acid) with hemicellulose at the mild-alkaline stage (MAS), and with lignin & cellulose-rich residues at severe-alkaline stage (SAS). The optimum MAS biorefining conditions gave hemicellulose, lignin, and hydroxycinnamic acid yields of 35, 60, and 85 % for WS, and 37, 72, and 66 % for WB, respectively. The WS hydroxycinnamic acids contained p-Coumaric acid (64 %) and ferulic acid (29 %), whereas WB's contained ferulic acid (95 %). At the SAS optimum conditions, cellulose and lignin yields were 76 and 60 % for WS ∼ 48 and 62 % for WB, respectively. The cellulose content and crystallinity of MAS WB residues increased by 111 and 100 %, respectively >55 and 14 % for WS. However, the SAS WS and WB residues' cellulose content and crystallinity increases were > 30 % and 10-20 %, respectively. Therefore, sequential optimization enabled selective hydroxycinnamic acid extraction and increased hemicellulose, lignin, and cellulose-rich residue yields. Furthermore, the optimal conditions for WS and WB at the two stages overlapped, allowing potential co-processing in integrated biorefineries.
在综合生物炼制厂中,与多糖和木质素的交联会降低羟基肉桂酸的产量和纯度。在以小麦秸秆(WS)和麦麸(WB)为基础的生物炼制装置中,对基于两步碱性的工艺进行了顺序优化,以便在温和碱性阶段(MAS)与半纤维素选择性联产羟基肉桂酸(对香豆酸和阿魏酸),并在强碱性阶段(SAS)与富含木质素和纤维素的残渣联产。最佳的MAS生物精炼条件下,WS的半纤维素、木质素和羟基肉桂酸产量分别为35%、60%和85%,WB的分别为37%、72%和66%。WS中的羟基肉桂酸包含对香豆酸(64%)和阿魏酸(29%),而WB中的包含阿魏酸(95%)。在SAS的最佳条件下,WS的纤维素和木质素产量分别为76%和60%,WB的分别约为48%和62%。MAS WB残渣的纤维素含量和结晶度分别提高了111%和100%,WS的分别提高了>55%和14%。然而,SAS WS和WB残渣的纤维素含量和结晶度分别提高了>30%和10 - 20%。因此,顺序优化实现了羟基肉桂酸的选择性提取,并提高了半纤维素、木质素和富含纤维素残渣的产量。此外,WS和WB在两个阶段的最佳条件重叠,使得在综合生物炼制厂中有潜在的联合加工可能性。