Suppr超能文献

改善宏基因组病毒组规模数据的报告。

Improving the reporting of metagenomic virome-scale data.

作者信息

Chang Wei-Shan, Harvey Erin, Mahar Jackie E, Firth Cadhla, Shi Mang, Simon-Loriere Etienne, Geoghegan Jemma L, Wille Michelle

机构信息

School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.

Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.

出版信息

Commun Biol. 2024 Dec 20;7(1):1687. doi: 10.1038/s42003-024-07212-3.

Abstract

Over the last decade metagenomic sequencing has facilitated an increasing number of virome-scale studies, leading to an exponential expansion in understanding of virus diversity. This is partially driven by the decreasing costs of metagenomic sequencing, improvements in computational tools for revealing novel viruses, and an increased understanding of the key role that viruses play in human and animal health. A central concern associated with this remarkable increase in the number of virome-scale studies is the lack of broadly accepted "gold standards" for reporting the data and results generated. This is of particular importance for animal virome studies as there are a multitude of nuanced approaches for both data presentation and analysis, all of which impact the resulting outcomes. As such, the results of published studies can be difficult to contextualise and may be of reduced utility due to reporting deficiencies. Herein, we aim to address these reporting issues by outlining recommendations for the presentation of virome data, encouraging a transparent communication of findings that can be interpreted in evolutionary and ecological contexts.

摘要

在过去十年中,宏基因组测序推动了越来越多病毒组规模的研究,从而在对病毒多样性的理解上呈指数级扩展。这部分得益于宏基因组测序成本的降低、用于发现新型病毒的计算工具的改进,以及对病毒在人类和动物健康中所起关键作用的进一步认识。与病毒组规模研究数量的显著增加相关的一个核心问题是,缺乏广泛认可的用于报告所产生数据和结果的“金标准”。这对于动物病毒组研究尤为重要,因为在数据呈现和分析方面有多种细微差别不同的方法,所有这些都会影响最终结果。因此,已发表研究的结果可能难以进行背景化解读,并且由于报告缺陷其效用可能会降低。在此,我们旨在通过概述病毒组数据呈现的建议来解决这些报告问题,鼓励以透明的方式传达研究结果,以便在进化和生态背景下进行解读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac2b/11662069/829f9fc2a383/42003_2024_7212_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验