Suppr超能文献

基于ORIENT-3研究数据的人工神经网络系统预测信迪利单抗在鳞状非小细胞肺癌中的疗效。

Artificial neural network systems to predict the response to sintilimab in squamous-cell non-small-cell lung cancer based on data of ORIENT-3 study.

作者信息

Xie Tongji, Fan Guangyu, Tang Le, Xing Puyuan, Shi Yuankai

机构信息

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.

出版信息

Cancer Immunol Immunother. 2024 Dec 21;74(1):29. doi: 10.1007/s00262-024-03886-0.

Abstract

BACKGROUND

Existing biomarkers and models for predicting response to programmed cell death protein 1 monoclonal antibody in advanced squamous-cell non-small cell lung cancer (sqNSCLC) did not have enough accuracy. We used data from the ORIENT-3 study to construct artificial neural network (ANN) systems to predict the response to sintilimab for sqNSCLC.

METHODS

Four ANN systems based on bulk RNA data to predict disease control (DC), immune DC (iDC), objective response (OR) and immune OR (iOR) were constructed and tested for patients with sqNSCLC treated with sintilimab. The mechanism exploration on the bulk and the spatial level were performed in patients from the ORIENT-3 study and the real world, respectively.

FINDINGS

sqNSCLC patients with different responses to sintilimab showed each unique transcriptomic spectrum. Four ANN systems showed high accuracy in the test cohort (AUC of DC, iDC, OR and iOR were 0.83, 0.89, 0.93 and 0.94, respectively). The performance of ANN systems was better than that of linear model systems and showed high stability. The mechanism exploration on the bulk level suggested that patients with lower ANN system scores (worse response) had a higher ratio of immune-related pathways enrichment. The mechanism exploration on the spatial level indicated that patients with better response to immunotherapy had fewer clusters of both tumor and cytotoxicity T cell spots.

INTERPRETATION

The four ANN systems showed high accuracy, robustness and stability in predicting the response to sintilimab for patients with sqNSCLC.

摘要

背景

现有的用于预测晚期鳞状非小细胞肺癌(sqNSCLC)对程序性细胞死亡蛋白1单克隆抗体反应的生物标志物和模型准确性不足。我们使用了ORIENT-3研究的数据构建人工神经网络(ANN)系统,以预测sqNSCLC对信迪利单抗的反应。

方法

构建了四个基于批量RNA数据预测疾病控制(DC)、免疫疾病控制(iDC)、客观缓解(OR)和免疫客观缓解(iOR)的ANN系统,并对接受信迪利单抗治疗的sqNSCLC患者进行测试。分别在ORIENT-3研究和现实世界的患者中进行批量和空间水平的机制探索。

结果

对信迪利单抗有不同反应的sqNSCLC患者表现出各自独特的转录组谱。四个ANN系统在测试队列中显示出高准确性(DC、iDC、OR和iOR的AUC分别为0.83、0.89、0.93和0.94)。ANN系统的性能优于线性模型系统,且具有高稳定性。批量水平的机制探索表明,ANN系统得分较低(反应较差)的患者免疫相关通路富集比例较高。空间水平的机制探索表明,对免疫治疗反应较好的患者肿瘤和细胞毒性T细胞斑点簇较少。

解读

四个ANN系统在预测sqNSCLC患者对信迪利单抗的反应方面显示出高准确性、稳健性和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f2d/11663205/e4efb16b9830/262_2024_3886_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验