Suppr超能文献

采用连续、大容量采集的大鼠脑无创容积超声定位显微镜

Non-invasive transcranial volumetric ultrasound localization microscopy of the rat brain with continuous, high volume-rate acquisition.

机构信息

The Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University.

Electrical and Computer Engineering, NC State University.

出版信息

Theranostics. 2023 Feb 5;13(4):1235-1246. doi: 10.7150/thno.79189. eCollection 2023.

Abstract

Structure and function of the microvasculature provides critical information about disease state, can be used to identify local regions of pathology, and has been shown to be an indicator of response to therapy. Improved methods of assessing the microvasculature with non-invasive imaging modalities such as ultrasound will have an impact in biomedical theranostics. Ultrasound localization microscopy (ULM) is a new technology which allows processing of ultrasound data for visualization of microvasculature at a resolution better than allowed by acoustic diffraction with traditional ultrasound systems. Previous application of this modality in brain imaging has required the use of invasive procedures, such as a craniotomy, skull-thinning, or scalp removal, all of which are not feasible for the purpose of longitudinal studies. The impact of ultrasound localization microscopy is expanded using a 1024 channel matrix array ultrasonic transducer, four synchronized programmable ultrasound systems with customized high-performance hardware and software, and high-performance GPUs for processing. The potential of the imaging hardware and processing approaches are demonstrated in-vivo. : Our unique implementation allows asynchronous acquisition and data transfer for uninterrupted data collection at an ultra-high fixed frame rate. Using these methods, the vasculature was imaged using 100,000 volumes continuously at a volume acquisition rate of 500 volumes per second. With ULM, we achieved a resolution of 31 m, which is a resolution improvement on conventional ultrasound imaging by nearly a factor of ten, in 3-D. This was accomplished while imaging through the intact skull with no scalp removal, which demonstrates the utility of this method for longitudinal studies. The results demonstrate new capabilities to rapidly image and analyze complex vascular networks in 3-D volume space for structural and functional imaging in disease assessment, targeted therapeutic delivery, monitoring response to therapy, and other theranostic applications.

摘要

微血管的结构和功能提供了关于疾病状态的关键信息,可以用于识别局部病理区域,并已被证明是治疗反应的指标。改进的非侵入性成像方式如超声评估微血管的方法将对生物医学治疗诊断产生影响。超声定位显微镜(ULM)是一种新技术,允许处理超声数据,以实现优于传统超声系统声衍射允许的分辨率可视化微血管。该模式在脑成像中的先前应用需要使用侵入性程序,如开颅术、颅骨变薄或头皮去除,所有这些对于纵向研究都是不可行的。使用 1024 通道矩阵阵列超声换能器、四个同步可编程超声系统以及具有定制高性能硬件和软件的超声系统,以及用于处理的高性能 GPU,扩展了超声定位显微镜的影响。成像硬件和处理方法的潜力在体内得到了证明。我们独特的实现允许异步采集和数据传输,以在超高速固定帧率下不间断地进行数据采集。使用这些方法,以每秒 500 个体积的速度连续采集 10 万个体积,对血管进行成像。使用 ULM,我们实现了 31 m 的分辨率,这是传统超声成像分辨率的近十倍提高,在 3D 中。这是在不去除头皮的情况下通过完整颅骨成像实现的,这证明了该方法在纵向研究中的实用性。结果表明,该方法具有快速成像和分析复杂血管网络的新能力,可用于疾病评估、靶向治疗输送、监测治疗反应和其他治疗诊断应用中的结构和功能成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36e2/10008741/f0ec2f99c50e/thnov13p1235g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验