Suppr超能文献

基于广义分数优化的可解释轻量级卷积神经网络模型用于疟疾疾病分类。

Generalized fractional optimization-based explainable lightweight CNN model for malaria disease classification.

作者信息

Khan Zeshan Aslam, Waqar Muhammad, Raja Muhammad Junaid Ali Asif, Chaudhary Naveed Ishtiaq, Khan Abeer Tahir Mehmood Anwar, Raja Muhammad Asif Zahoor

机构信息

International Graduate Institute of Artificial Intelligence, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan.

Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan.

出版信息

Comput Biol Med. 2025 Feb;185:109593. doi: 10.1016/j.compbiomed.2024.109593. Epub 2024 Dec 21.

Abstract

Over the past few decades, machine learning and deep learning (DL) have incredibly influenced a broader range of scientific disciplines. DL-based strategies have displayed superior performance in image processing compared to conventional standard methods, especially in healthcare settings. Among the biggest threats to global public health is the fast spread of malaria. The plasmodium falciparum infection, the disease origin causes the intestinal illness. Fortunately, advances in artificial intelligence techniques have made it possible to use visual data sets to quickly and effectively diagnose malaria which has also proven to be cost and time effective. In literature, several DL approaches have previously been used with good precision but suffer from computational inefficiency and interpretability. Therefore, this research proposes a generalized fractional order-based explainable lightweight convolutional neural network model to overcome these limitations. The fractional order optimization algorithms have proven worth in terms of estimation accuracy and convergence speed for different applications. The proposed fractional order optimizer-based model offers an improved solution to malaria disease diagnosis with a percentage accuracy of 95 % using the standard NIH dataset and outperforms the existing complex models concerning speed and effectiveness. The proposed fractionally optimized lightweight CNN model has shown substantial performance on the external MP-IDB dataset and M5 test set as well by achieving a generalized test accuracy of 92 % and 90.4 % which verifies the robustness and generalizability of the proposed solution under available circumstances. Moreover, the efficacy of the proposed lightweight architecture is endorsed through evaluation metrics of precision, recall, and F1-score.

摘要

在过去几十年中,机器学习和深度学习(DL)对更广泛的科学学科产生了难以置信的影响。与传统标准方法相比,基于深度学习的策略在图像处理中表现出卓越的性能,尤其是在医疗环境中。疟疾的快速传播是全球公共卫生面临的最大威胁之一。恶性疟原虫感染是该疾病的起源,会引发肠道疾病。幸运的是,人工智能技术的进步使得利用视觉数据集快速有效地诊断疟疾成为可能,而且这也被证明具有成本效益和时间效益。在文献中,先前已经使用了几种深度学习方法,精度良好,但存在计算效率低和可解释性差的问题。因此,本研究提出了一种基于广义分数阶的可解释轻量级卷积神经网络模型来克服这些限制。分数阶优化算法在不同应用的估计精度和收敛速度方面已被证明是有价值的。所提出的基于分数阶优化器的模型为疟疾疾病诊断提供了一种改进的解决方案,使用标准的美国国立卫生研究院(NIH)数据集时准确率达到95%,并且在速度和有效性方面优于现有的复杂模型。所提出的分数阶优化轻量级卷积神经网络模型在外部MP-IDB数据集和M5测试集上也表现出了显著性能,分别实现了92%和90.4%的广义测试准确率,这验证了所提出的解决方案在现有情况下的稳健性和通用性。此外,所提出的轻量级架构的有效性通过精确率、召回率和F1分数等评估指标得到了认可。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验