通过可解释的定制卷积神经网络架构改进疟疾诊断。
Improving Malaria diagnosis through interpretable customized CNNs architectures.
作者信息
Ahamed Md Faysal, Nahiduzzaman Md, Mahmud Golam, Shafi Fariya Bintay, Ayari Mohamed Arselene, Khandakar Amith, Abdullah-Al-Wadud M, Islam S M Riazul
机构信息
Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh.
Department of Civil & Environmental Engineering, Qatar University, 2713, Doha, Qatar.
出版信息
Sci Rep. 2025 Feb 22;15(1):6484. doi: 10.1038/s41598-025-90851-1.
Malaria, which is spread via female Anopheles mosquitoes and is brought on by the Plasmodium parasite, persists as a serious illness, especially in areas with a high mosquito density. Traditional detection techniques, like examining blood samples with a microscope, tend to be labor-intensive, unreliable and necessitate specialized individuals. To address these challenges, we employed several customized convolutional neural networks (CNNs), including Parallel convolutional neural network (PCNN), Soft Attention Parallel Convolutional Neural Networks (SPCNN), and Soft Attention after Functional Block Parallel Convolutional Neural Networks (SFPCNN), to improve the effectiveness of malaria diagnosis. Among these, the SPCNN emerged as the most successful model, outperforming all other models in evaluation metrics. The SPCNN achieved a precision of 99.38 ± 0.21%, recall of 99.37 ± 0.21%, F1 score of 99.37 ± 0.21%, accuracy of 99.37 ± 0.30%, and an area under the receiver operating characteristic curve (AUC) of 99.95 ± 0.01%, demonstrating its robustness in detecting malaria parasites. Furthermore, we employed various transfer learning (TL) algorithms, including VGG16, ResNet152, MobileNetV3Small, EfficientNetB6, EfficientNetB7, DenseNet201, Vision Transformer (ViT), Data-efficient Image Transformer (DeiT), ImageIntern, and Swin Transformer (versions v1 and v2). The proposed SPCNN model surpassed all these TL methods in every evaluation measure. The SPCNN model, with 2.207 million parameters and a size of 26 MB, is more complex than PCNN but simpler than SFPCNN. Despite this, SPCNN exhibited the fastest testing times (0.00252 s), making it more computationally efficient than both PCNN and SFPCNN. We assessed model interpretability using feature activation maps, Gradient-weighted Class Activation Mapping (Grad-CAM) and SHapley Additive exPlanations (SHAP) visualizations for all three architectures, illustrating why SPCNN outperformed the others. The findings from our experiments show a significant improvement in malaria parasite diagnosis. The proposed approach outperforms traditional manual microscopy in terms of both accuracy and speed. This study highlights the importance of utilizing cutting-edge technologies to develop robust and effective diagnostic tools for malaria prevention.
疟疾通过雌性按蚊传播,由疟原虫引起,仍然是一种严重疾病,尤其是在蚊子密度高的地区。传统检测技术,如用显微镜检查血样,往往劳动强度大、不可靠且需要专业人员。为应对这些挑战,我们采用了几种定制的卷积神经网络(CNN),包括并行卷积神经网络(PCNN)、软注意力并行卷积神经网络(SPCNN)和功能块后软注意力并行卷积神经网络(SFPCNN),以提高疟疾诊断的有效性。其中,SPCNN成为最成功的模型,在评估指标上优于所有其他模型。SPCNN的精确率为99.38±0.21%,召回率为99.37±0.21%,F1分数为99.37±0.21%,准确率为99.37±0.30%,以及受试者工作特征曲线下面积(AUC)为99.95±0.01%,证明了其在检测疟原虫方面的稳健性。此外,我们采用了各种迁移学习(TL)算法,包括VGG16、ResNet152、MobileNetV3Small、EfficientNetB6、EfficientNetB7、DenseNet201、视觉Transformer(ViT)、数据高效图像Transformer(DeiT)、ImageIntern和Swin Transformer(版本v1和v2)。所提出的SPCNN模型在各项评估指标上均超过了所有这些TL方法。SPCNN模型有220.7万个参数,大小为26MB,比PCNN更复杂,但比SFPCNN更简单。尽管如此,SPCNN的测试时间最快(0.00252秒),使其在计算效率上高于PCNN和SFPCNN。我们使用特征激活图、梯度加权类激活映射(Grad-CAM)和SHapley加法解释(SHAP)可视化对所有三种架构评估模型的可解释性,说明了SPCNN优于其他模型的原因。我们实验的结果表明疟疾寄生虫诊断有显著改善。所提出的方法在准确性和速度方面均优于传统的手动显微镜检查。这项研究强调了利用前沿技术开发强大而有效的疟疾预防诊断工具的重要性。