文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的疟原虫检测:用于准确鉴定恶性疟原虫和间日疟原虫物种的卷积神经网络模型

Deep learning-based malaria parasite detection: convolutional neural networks model for accurate species identification of Plasmodium falciparum and Plasmodium vivax.

作者信息

Ramos-Briceño Diego A, Flammia-D'Aleo Alessandro, Fernández-López Gerardo, Carrión-Nessi Fhabián S, Forero-Peña David A

机构信息

School of Systems Engineering, Faculty of Engineering, Universidad Metropolitana de Caracas, Caracas, Venezuela.

Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela.

出版信息

Sci Rep. 2025 Jan 30;15(1):3746. doi: 10.1038/s41598-025-87979-5.


DOI:10.1038/s41598-025-87979-5
PMID:39885248
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11782605/
Abstract

Accurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images. Previous models efficiently detected malaria parasites in red blood cells but had difficulty differentiating between species. We propose a CNN-based model for classifying cells infected by P. falciparum, P. vivax, and uninfected white blood cells from thick blood smears. Our best-performing model utilizes a seven-channel input and correctly predicted 12,876 out of 12,954 cases. We also generated a cross-validation confusion matrix that showed the results of five iterations, achieving 63,654 out of 64,126 true predictions. The model's accuracy reached 99.51%, a precision of 99.26%, a recall of 99.26%, a specificity of 99.63%, an F1 score of 99.26%, and a loss of 2.3%. We are now developing a system based on real-world quality images to create a comprehensive detection tool for remote regions where trained microscopists are unavailable.

摘要

准确诊断疟疾并精确鉴定疟原虫种类对于有效治疗至关重要。虽然显微镜检查仍是疟疾诊断的金标准,但它严重依赖训练有素的人员。人工智能(AI)的进步,特别是卷积神经网络(CNN),通过实现医学图像的自动分析,显著提高了诊断能力和准确性。先前的模型能够有效检测红细胞中的疟原虫,但在区分疟原虫种类方面存在困难。我们提出了一种基于CNN的模型,用于对厚血涂片中标本进行分类,这些样本包括感染恶性疟原虫、间日疟原虫的细胞以及未感染的白细胞。我们表现最佳的模型采用七通道输入,在12954个病例中正确预测了12876个。我们还生成了一个交叉验证混淆矩阵,展示了五次迭代的结果,在64126个真实预测中实现了63654个。该模型的准确率达到99.51%,精确率为99.26%,召回率为99.26%,特异性为99.63%,F1分数为99.26%,损失率为2.3%。我们目前正在基于真实世界的高质量图像开发一个系统,以创建一个适用于缺乏训练有素的显微镜技师的偏远地区的综合检测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/e951c625da7f/41598_2025_87979_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/e8edb1ebbac1/41598_2025_87979_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/4fceef42c20b/41598_2025_87979_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/16f98bf186df/41598_2025_87979_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/3a39bff704cf/41598_2025_87979_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/9a44409de75e/41598_2025_87979_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/89f03ec1c9a7/41598_2025_87979_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/6a82b2472b73/41598_2025_87979_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/6f85400097f4/41598_2025_87979_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/e16eb15c9dfe/41598_2025_87979_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/e951c625da7f/41598_2025_87979_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/e8edb1ebbac1/41598_2025_87979_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/4fceef42c20b/41598_2025_87979_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/16f98bf186df/41598_2025_87979_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/3a39bff704cf/41598_2025_87979_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/9a44409de75e/41598_2025_87979_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/89f03ec1c9a7/41598_2025_87979_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/6a82b2472b73/41598_2025_87979_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/6f85400097f4/41598_2025_87979_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/e16eb15c9dfe/41598_2025_87979_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d6/11782605/e951c625da7f/41598_2025_87979_Fig10_HTML.jpg

相似文献

[1]
Deep learning-based malaria parasite detection: convolutional neural networks model for accurate species identification of Plasmodium falciparum and Plasmodium vivax.

Sci Rep. 2025-1-30

[2]
Systematic review and meta-analysis: rapid diagnostic tests versus placental histology, microscopy and PCR for malaria in pregnant women.

Malar J. 2011-10-28

[3]
Severe thrombocytopaenia in patients with vivax malaria compared to falciparum malaria: a systematic review and meta-analysis.

Infect Dis Poverty. 2018-2-9

[4]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[5]
The resurgence of malaria in Northern Iran in 2023: a wake-up call.

BMC Infect Dis. 2025-7-15

[6]
Trend of malaria parasites infection in Ethiopia along an international border: a Bayesian spatio-temporal study.

Infect Dis Poverty. 2025-7-11

[7]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[8]
Systematic review of Plasmodium falciparum and Plasmodium vivax polyclonal infections: Impact of prevalence, study population characteristics, and laboratory procedures.

PLoS One. 2021

[9]
Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature.

Malar J. 2017-4-19

[10]
Primaquine for reducing Plasmodium falciparum transmission.

Cochrane Database Syst Rev. 2012-9-12

本文引用的文献

[1]
Assessing the Generalizability of Deep Learning Models Trained on Standardized and Nonstandardized Images and Their Performance Against Teledermatologists: Retrospective Comparative Study.

JMIR Dermatol. 2022-9-12

[2]
Efficient deep learning-based approach for malaria detection using red blood cell smears.

Sci Rep. 2024-6-10

[3]
Quantitative Forecasting of Malaria Parasite Using Machine Learning Models: MLR, ANN, ANFIS and Random Forest.

Diagnostics (Basel). 2024-2-9

[4]
Intelligent diagnostic model for malaria parasite detection and classification using imperative inception-based capsule neural networks.

Sci Rep. 2023-8-17

[5]
Rethinking human resources and capacity building needs for malaria control and elimination in Africa.

PLOS Glob Public Health. 2022-5-9

[6]
Malaria Detection Using Advanced Deep Learning Architecture.

Sensors (Basel). 2023-1-29

[7]
Performance Analysis of Deep Learning Algorithms in Diagnosis of Malaria Disease.

Diagnostics (Basel). 2023-2-1

[8]
Diagnosing Malaria Patients with and Using Deep Learning for Thick Smear Images.

Diagnostics (Basel). 2021-10-27

[9]
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

BMC Bioinformatics. 2021-3-8

[10]
Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and its Smartphone Based Application.

Diagnostics (Basel). 2020-5-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索