Ramos-Briceño Diego A, Flammia-D'Aleo Alessandro, Fernández-López Gerardo, Carrión-Nessi Fhabián S, Forero-Peña David A
School of Systems Engineering, Faculty of Engineering, Universidad Metropolitana de Caracas, Caracas, Venezuela.
Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela.
Sci Rep. 2025 Jan 30;15(1):3746. doi: 10.1038/s41598-025-87979-5.
Accurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images. Previous models efficiently detected malaria parasites in red blood cells but had difficulty differentiating between species. We propose a CNN-based model for classifying cells infected by P. falciparum, P. vivax, and uninfected white blood cells from thick blood smears. Our best-performing model utilizes a seven-channel input and correctly predicted 12,876 out of 12,954 cases. We also generated a cross-validation confusion matrix that showed the results of five iterations, achieving 63,654 out of 64,126 true predictions. The model's accuracy reached 99.51%, a precision of 99.26%, a recall of 99.26%, a specificity of 99.63%, an F1 score of 99.26%, and a loss of 2.3%. We are now developing a system based on real-world quality images to create a comprehensive detection tool for remote regions where trained microscopists are unavailable.
准确诊断疟疾并精确鉴定疟原虫种类对于有效治疗至关重要。虽然显微镜检查仍是疟疾诊断的金标准,但它严重依赖训练有素的人员。人工智能(AI)的进步,特别是卷积神经网络(CNN),通过实现医学图像的自动分析,显著提高了诊断能力和准确性。先前的模型能够有效检测红细胞中的疟原虫,但在区分疟原虫种类方面存在困难。我们提出了一种基于CNN的模型,用于对厚血涂片中标本进行分类,这些样本包括感染恶性疟原虫、间日疟原虫的细胞以及未感染的白细胞。我们表现最佳的模型采用七通道输入,在12954个病例中正确预测了12876个。我们还生成了一个交叉验证混淆矩阵,展示了五次迭代的结果,在64126个真实预测中实现了63654个。该模型的准确率达到99.51%,精确率为99.26%,召回率为99.26%,特异性为99.63%,F1分数为99.26%,损失率为2.3%。我们目前正在基于真实世界的高质量图像开发一个系统,以创建一个适用于缺乏训练有素的显微镜技师的偏远地区的综合检测工具。
BMC Infect Dis. 2025-7-15
Infect Dis Poverty. 2025-7-11
Cochrane Database Syst Rev. 2012-9-12
Diagnostics (Basel). 2024-2-9
PLOS Glob Public Health. 2022-5-9
Sensors (Basel). 2023-1-29
Diagnostics (Basel). 2023-2-1
Diagnostics (Basel). 2021-10-27
BMC Bioinformatics. 2021-3-8
Diagnostics (Basel). 2020-5-20