Fan Liyuan, Zhou Xinyuan, Li Mian, Gao Anwei, Yu Haojie, Tian Hui, Liao Liandi, Xu Liyan, Sun Liang
Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China.
Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1179.
Recent studies have confirmed that certain circRNAs encode proteins that are integral to various biological functions. In this study, we present CICADA, an algorithm specifically designed to assess the protein-coding potential and coding products of circRNAs at high throughput, which enables the identification of previously unknown circRNA-encoded proteins. By harnessing the potential of this algorithm, we identified a variety of functional, protein-coding circRNAs in esophageal squamous cell carcinoma and established circRNA translation profiles for diverse types of cancer. This advancement innovatively explores the hidden proteome within the genome, poised to catalyze discoveries in biomarkers and therapies for cancers and complex diseases. CICADA is accessible as a Python module (https://github.com/SunLab-biotool/CICADA).
最近的研究证实,某些环状RNA编码对各种生物学功能至关重要的蛋白质。在本研究中,我们展示了CICADA,这是一种专门设计用于高通量评估环状RNA的蛋白质编码潜力和编码产物的算法,它能够识别以前未知的环状RNA编码蛋白质。通过利用该算法的潜力,我们在食管鳞状细胞癌中鉴定了多种功能性蛋白质编码环状RNA,并建立了不同类型癌症的环状RNA翻译图谱。这一进展创新性地探索了基因组中隐藏的蛋白质组,有望推动癌症和复杂疾病的生物标志物及治疗方法的发现。CICADA可作为一个Python模块获取(https://github.com/SunLab-biotool/CICADA)。