Suppr超能文献

芋螺毒素深度学习框架(ConoDL):用于快速生成和预测芋螺毒素

ConoDL: a deep learning framework for rapid generation and prediction of conotoxins.

作者信息

Guo Menghan, Li Zengpeng, Deng Xuejin, Luo Ding, Yang Jingyi, Chen Yingjun, Xue Weiwei

机构信息

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.

State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen, 361005, China.

出版信息

J Comput Aided Mol Des. 2024 Dec 26;39(1):4. doi: 10.1007/s10822-024-00582-0.

Abstract

Conotoxins, being small disulfide-rich and bioactive peptides, manifest notable pharmacological potential and find extensive applications. However, the exploration of conotoxins' vast molecular space using traditional methods is severely limited, necessitating the urgent need of developing novel approaches. Recently, deep learning (DL)-based methods have advanced to the molecular generation of proteins and peptides. Nevertheless, the limited data and the intricate structure of conotoxins constrain the application of deep learning models in the generation of conotoxins. We propose ConoDL, a framework for the generation and prediction of conotoxins, comprising the end-to-end conotoxin generation model (ConoGen) and the conotoxin prediction model (ConoPred). ConoGen employs transfer learning and a large language model (LLM) to tackle the challenges in conotoxin generation. Meanwhile, ConoPred filters artificial conotoxins generated by ConoGen, narrowing down the scope for subsequent research. A comprehensive evaluation of the peptide properties at both sequence and structure levels indicates that the artificial conotoxins generated by ConoDL exhibit a certain degree of similarity to natural conotoxins. Furthermore, ConoDL has generated artificial conotoxins with novel cysteine scaffolds. Therefore, ConoDL may uncover new cysteine scaffolds and conotoxin molecules, facilitating further exploration of the molecular space of conotoxins and the discovery of pharmacologically active variants.

摘要

芋螺毒素是富含二硫键的小分子生物活性肽,具有显著的药理潜力并有着广泛的应用。然而,使用传统方法探索芋螺毒素广阔的分子空间受到严重限制,迫切需要开发新方法。最近,基于深度学习(DL)的方法已发展到用于蛋白质和肽的分子生成。尽管如此,芋螺毒素有限的数据和复杂的结构限制了深度学习模型在芋螺毒素生成中的应用。我们提出了ConoDL,这是一个用于芋螺毒素生成和预测的框架,包括端到端的芋螺毒素生成模型(ConoGen)和芋螺毒素预测模型(ConoPred)。ConoGen采用迁移学习和大语言模型(LLM)来应对芋螺毒素生成中的挑战。同时,ConoPred对ConoGen生成的人工芋螺毒素进行筛选,缩小后续研究的范围。在序列和结构水平上对肽特性的综合评估表明,ConoDL生成的人工芋螺毒素与天然芋螺毒素表现出一定程度的相似性。此外,ConoDL还生成了具有新型半胱氨酸支架的人工芋螺毒素。因此,ConoDL可能会发现新的半胱氨酸支架和芋螺毒素分子,有助于进一步探索芋螺毒素的分子空间并发现具有药理活性的变体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验