Koutsouleris Nikolaos, Khuntia Adyasha Tejaswi, Popovic David, Sarisik Elif, Buciuman Madalina O, Pedersen Mads L, Westlye Lars T, Andreassen Ole, Meyer-Lindenberg Andreas, Kambeitz Joseph, Salokangas Raimo, Hietala Jarmo, Bertolino Alessandro, Borgwardt Stefan, Brambilla Paolo, Upthegrove Rachel, Wood Stephen, Lencer Rebekka, Meisenzahl Eva, Falkai Peter, Schwarz Emanuel, Wiegand Ariane
Ludwig-Maximilians-University.
Ludwig-Maximilian-University.
Res Sq. 2024 Dec 11:rs.3.rs-5259910. doi: 10.21203/rs.3.rs-5259910/v1.
Understanding the neurobiological underpinnings of weight gain could reduce excess mortality and improve long-term trajectories of psychiatric disorders. We used support-vector machines and whole-brain voxel-wise grey matter volume to generate and validate a BMI predictor in healthy individuals (N = 1504) and applied it to individuals with schizophrenia (SCZ,N = 146), clinical high-risk states for psychosis (CHR,N = 213) and recent-onset depression (ROD,N = 200). We computed BMIgap (BMI-BMI), interrogated its brain-level overlaps with SCZ and explored whether BMIgap predicted weight gain at 1- and 2-year follow-up. SCZ (BMIgap = 1.05kg/m) and CHR individuals (BMIgap = 0.51 kg/m) showed increased and ROD individuals (BMIgap=-0.82 kg/m) decreased BMIgap. Shared brain patterns of BMI and SCZ were linked to illness duration, disease onset, and hospitalization frequency. Higher BMIgap predicted future weight gain, particularly in younger ROD individuals, and at 2-year follow-up. Therefore, we propose BMIgap as a potential brain-derived measure to stratify at-risk individuals and deliver tailored interventions for better metabolic risk control.
了解体重增加的神经生物学基础可以降低超额死亡率,并改善精神疾病的长期发展轨迹。我们使用支持向量机和全脑体素级灰质体积来生成并验证健康个体(N = 1504)的BMI预测模型,并将其应用于精神分裂症患者(SCZ,N = 146)、临床精神病高危状态个体(CHR,N = 213)和近期发病的抑郁症患者(ROD,N = 200)。我们计算了BMI差值(BMI - BMI),研究其与SCZ在脑水平上的重叠情况,并探讨BMI差值是否能预测1年和2年随访时的体重增加。SCZ患者(BMI差值 = 1.05kg/m²)和CHR个体(BMI差值 = 0.51 kg/m²)的BMI差值增加,而ROD个体(BMI差值 = -0.82 kg/m²)的BMI差值降低。BMI与SCZ的共享脑模式与病程、疾病发作和住院频率有关。较高的BMI差值可预测未来体重增加,尤其是在年轻的ROD个体中,以及在2年随访时。因此,我们提出BMI差值作为一种潜在的源自大脑的指标,用于对高危个体进行分层,并提供量身定制的干预措施,以更好地控制代谢风险。