Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany; Max-Planck Institute of Psychiatry, Munich, Germany; Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, United Kingdom.
Department of Psychology, Yale University, New Haven, Connecticut.
Biol Psychiatry. 2021 Nov 1;90(9):632-642. doi: 10.1016/j.biopsych.2021.06.023. Epub 2021 Jul 6.
Transition to psychosis is among the most adverse outcomes of clinical high-risk (CHR) syndromes encompassing ultra-high risk (UHR) and basic symptom states. Clinical risk calculators may facilitate an early and individualized interception of psychosis, but their real-world implementation requires thorough validation across diverse risk populations, including young patients with depressive syndromes.
We validated the previously described NAPLS-2 (North American Prodrome Longitudinal Study 2) calculator in 334 patients (26 with transition to psychosis) with CHR or recent-onset depression (ROD) drawn from the multisite European PRONIA (Personalised Prognostic Tools for Early Psychosis Management) study. Patients were categorized into three risk enrichment levels, ranging from UHR, over CHR, to a broad-risk population comprising patients with CHR or ROD (CHR|ROD). We assessed how risk enrichment and different predictive algorithms influenced prognostic performance using reciprocal external validation.
After calibration, the NAPLS-2 model predicted psychosis with a balanced accuracy (BAC) (sensitivity, specificity) of 68% (73%, 63%) in the PRONIA-UHR cohort, 67% (74%, 60%) in the CHR cohort, and 70% (73%, 66%) in patients with CHR|ROD. Multiple model derivation in PRONIA-CHR|ROD and validation in NAPLS-2-UHR patients confirmed that broader risk definitions produced more accurate risk calculators (CHR|ROD-based vs. UHR-based performance: 67% [68%, 66%] vs. 58% [61%, 56%]). Support vector machines were superior in CHR|ROD (BAC = 71%), while ridge logistic regression and support vector machines performed similarly in CHR (BAC = 67%) and UHR cohorts (BAC = 65%). Attenuated psychotic symptoms predicted psychosis across risk levels, while younger age and reduced processing speed became increasingly relevant for broader risk cohorts.
Clinical-neurocognitive machine learning models operating in young patients with affective and CHR syndromes facilitate a more precise and generalizable prediction of psychosis. Future studies should investigate their therapeutic utility in large-scale clinical trials.
从临床高风险 (CHR) 综合征(包括超高风险 (UHR) 和基本症状状态)到精神病的转变是最不利的结果之一。临床风险计算器可以帮助早期和个体化地干预精神病,但它们的实际实施需要在不同的风险人群中进行彻底验证,包括患有抑郁综合征的年轻患者。
我们在来自多地点欧洲 PRONIA(早期精神病管理的个性化预后工具)研究的 334 名患者(26 名转变为精神病)中验证了之前描述的 NAPLS-2(北美前驱纵向研究 2)计算器,这些患者患有 CHR 或近期发作的抑郁 (ROD)。患者被分为三个风险富集水平,从 UHR 到 CHR,再到包括 CHR 或 ROD 患者的广泛风险人群 (CHR|ROD)。我们使用互惠外部验证评估了风险富集和不同预测算法如何影响预后性能。
经过校准,NAPLS-2 模型在 PRONIA-UHR 队列中预测精神病的平衡准确性 (BAC)(敏感性,特异性)为 68%(73%,63%),在 CHR 队列中为 67%(74%,60%),在 CHR|ROD 患者中为 70%(73%,66%)。在 PRONIA-CHR|ROD 中进行多次模型推导并在 NAPLS-2-UHR 患者中进行验证,证实更广泛的风险定义产生了更准确的风险计算器(CHR|ROD 为基础的与 UHR 为基础的表现:67%[68%,66%]与 58%[61%,56%])。支持向量机在 CHR|ROD 中表现更好(BAC=71%),而岭逻辑回归和支持向量机在 CHR(BAC=67%)和 UHR 队列(BAC=65%)中的表现相似。减弱的精神病症状在各个风险水平上均预测精神病,而年龄较小和处理速度降低对更广泛的风险队列变得越来越重要。
在患有情感和 CHR 综合征的年轻患者中使用临床神经认知机器学习模型有助于更精确和更具普遍性地预测精神病。未来的研究应在大规模临床试验中研究它们的治疗实用性。