Deng Guifeng, Niu Mengfan, Rao Shuying, Luo Yuxi, Zhang Jianjia, Xie Junyi, Yu Zhenghe, Liu Wenjuan, Zhang Junhang, Zhao Sha, Pan Gang, Li Xiaojing, Deng Wei, Guo Wanjun, Zhang Yaoyun, Li Tao, Jiang Haiteng
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, School of Brain Science and Brain Medicine, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China.
medRxiv. 2025 May 8:2024.12.11.24318815. doi: 10.1101/2024.12.11.24318815.
Sleep disorders affect billions worldwide, yet clinical polysomnography (PSG) analysis remains hindered by labor-intensive manual scoring and limited generalizability of automated sleep staging tools across heterogeneous protocols. We present LPSGM, a large-scale PSG model designed to address two critical challenges in sleep medicine: cross-center generalization and adaptable diagnosis of neuropsychiatric disorders. Trained on 220,500 hours of multi-center PSG data (24,000 full-night recordings from 16 public datasets), LPSGM integrates domain-adaptive pre-training, flexible channel configurations, and a unified architecture to mitigate variability in equipment, montages, and populations during sleep staging while enabling downstream fine-tuning for mental disorder detection. In prospective validation, LPSGM achieves expert-level consensus in sleep staging (κ = 0.845 ± 0.066 vs. inter-expert κ = 0.850 ± 0.102) and matches the performance of fully supervised models on two independent private cohorts. When fine-tuned, it attains 88.01% accuracy in narcolepsy detection and 100% accuracy in identifying major depressive disorder (MDD), highlighting shared physiological biomarkers between sleep architecture and neuropsychiatric symptoms. By bridging automated sleep staging with real-world clinical deployment, LPSGM establishes a scalable, data-efficient framework for integrated sleep and mental health diagnostics. The code and pre-trained model are publicly available at https://github.com/Deng-GuiFeng/LPSGM to advance reproducibility and translational research in sleep medicine.
睡眠障碍影响着全球数十亿人,但临床多导睡眠图(PSG)分析仍然受到劳动密集型人工评分的阻碍,并且自动化睡眠分期工具在不同协议之间的通用性有限。我们提出了LPSGM,这是一个大规模的PSG模型,旨在解决睡眠医学中的两个关键挑战:跨中心泛化和神经精神疾病的适应性诊断。LPSGM在220,500小时的多中心PSG数据(来自16个公共数据集的24,000个整夜记录)上进行训练,它集成了领域自适应预训练、灵活的通道配置和统一的架构,以减轻睡眠分期过程中设备、导联设置和人群的变异性,同时能够进行下游微调以检测精神障碍。在前瞻性验证中,LPSGM在睡眠分期方面达到了专家级共识(κ = 0.845 ± 0.066,而专家间κ = 0.850 ± 0.102),并在两个独立的私有队列上与完全监督模型的性能相匹配。在进行微调后,它在发作性睡病检测中的准确率达到88.01%,在识别重度抑郁症(MDD)中的准确率达到100%,突出了睡眠结构与神经精神症状之间共享的生理生物标志物。通过将自动化睡眠分期与实际临床应用相结合,LPSGM建立了一个可扩展的、数据高效的综合睡眠和心理健康诊断框架。代码和预训练模型可在https://github.com/Deng-GuiFeng/LPSGM上公开获取,以推动睡眠医学的可重复性和转化研究。