Suppr超能文献

WebGWAS:用于对任意表型进行即时全基因组关联研究的网络服务器。

WebGWAS: A web server for instant GWAS on arbitrary phenotypes.

作者信息

Zietz Michael, Gisladottir Undina, LaRow Brown Kathleen, Tatonetti Nicholas P

机构信息

Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069.

Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032.

出版信息

medRxiv. 2024 Dec 12:2024.12.11.24318870. doi: 10.1101/2024.12.11.24318870.

Abstract

Complex disease genetics is a key area of research for reducing disease and improving human health. Genome-wide association studies (GWAS) help in this research by identifying regions of the genome that contribute to complex disease risk. However, GWAS are computationally intensive and require access to individual-level genetic and health information, which presents concerns about privacy and imposes costs on researchers seeking to study complex diseases. Publicly released pan-biobank GWAS summary statistics provide immediate access to results for a subset of phenotypes, but they do not inform about all phenotypes or hand-crafted phenotype definitions, which are often more relevant to study. Here, we present WebGWAS, a new tool that allows researchers to obtain GWAS summary statistics for a phenotype of interest without needing access to individual-level genetic and phenotypic data. Our public web app can be used to study custom phenotype definitions, including inclusion and exclusion criteria, and to produce approximate GWAS summary statistics for that phenotype. WebGWAS computes approximate GWAS summary statistics very quickly (<10 seconds), and it does not store private health information. We also show how the statistical approximation underlying WebGWAS can be used to accelerate the computation of multi-phenotype GWAS among correlated phenotypes. Our tool provides a faster approach to GWAS for researchers interested in complex disease, providing approximate summary statistics in short order, without the need to collect, process, and produce GWAS results. Overall, this method advances complex disease research by facilitating more accessible and cost-effective genetic studies using large observational data.

摘要

复杂疾病遗传学是减少疾病和改善人类健康的关键研究领域。全基因组关联研究(GWAS)通过识别基因组中与复杂疾病风险相关的区域,助力了这一研究。然而,GWAS计算量巨大,且需要获取个体层面的遗传和健康信息,这引发了对隐私的担忧,并给试图研究复杂疾病的研究人员带来了成本负担。公开发布的泛生物样本库GWAS汇总统计数据能让研究人员立即获取部分表型的结果,但它们并未涵盖所有表型或手工定制的表型定义,而这些往往与研究更相关。在此,我们介绍WebGWAS,这是一种新工具,它使研究人员无需获取个体层面的遗传和表型数据,就能获得感兴趣表型的GWAS汇总统计数据。我们的公共网络应用程序可用于研究定制的表型定义,包括纳入和排除标准,并为该表型生成近似的GWAS汇总统计数据。WebGWAS能非常快速地(<10秒)计算近似的GWAS汇总统计数据,且不存储私人健康信息。我们还展示了如何利用WebGWAS背后的统计近似方法来加速相关表型间多表型GWAS的计算。我们的工具为对复杂疾病感兴趣的研究人员提供了一种更快的GWAS方法,能在短时间内提供近似汇总统计数据,而无需收集、处理和生成GWAS结果。总体而言,该方法通过利用大型观察性数据促进更易获取且成本效益更高的基因研究,推动了复杂疾病研究的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a270/11661389/daedec3fdb67/nihpp-2024.12.11.24318870v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验