Suppr超能文献

基于因子分析和机器学习的居住环境中中国老年人综合健康与社会照护服务质量评估

Service quality evaluation of integrated health and social care for older Chinese adults in residential settings based on factor analysis and machine learning.

作者信息

Liu Zhihan, Ouyang Caini, Gu Nian, Zhang Jiaheng, He Xiaojiao, Feng Qiuping, Chang Chunguyu

机构信息

School of Public Administration, Central South University, Changsha, Hunan, China.

出版信息

Digit Health. 2024 Dec 19;10:20552076241305705. doi: 10.1177/20552076241305705. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

To evaluate the service quality of integrated health and social care institutions for older adults in residential settings in China, addressing a critical gap in the theoretical and empirical understanding of service quality assurance in this rapidly expanding sector.

METHODS

This study employs three machine learning algorithms-Backpropagation Neural Networks (BPNN), Feedforward Neural Networks (FNN), and Support Vector Machines (SVM)-to train and validate an evaluative item system. Comparative indices such as Mean Squared Error, Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and predictive performance metrics were employed to assess the models.

RESULTS

The service quality evaluation model, enhanced by factor analysis and fuzzy BPNN, demonstrated reduced error rates and improved predictive performance metrics. Key factors influencing service quality included daily care, medical attention, recreational activities, rehabilitative services, and psychological well-being, listed in order of their impact.

CONCLUSION

The BPNN-based model provides a comprehensive and unified framework for assessing service quality in integrated care settings. Given the pressing need to match service supply with the complex demands of older adults, refining the service delivery architecture is essential for enhancing overall service quality.

摘要

目的

评估中国老年人居住环境中综合健康与社会照护机构的服务质量,填补这一快速发展领域服务质量保障理论与实证理解方面的关键空白。

方法

本研究采用三种机器学习算法——反向传播神经网络(BPNN)、前馈神经网络(FNN)和支持向量机(SVM)——来训练和验证一个评估指标体系。使用均方误差、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)等比较指标以及预测性能指标来评估模型。

结果

通过因子分析和模糊BPNN增强的服务质量评估模型,展示出更低的错误率和更好的预测性能指标。影响服务质量的关键因素包括日常照料、医疗护理、娱乐活动、康复服务和心理健康,按其影响程度依次列出。

结论

基于BPNN的模型为评估综合照护环境中的服务质量提供了一个全面且统一的框架。鉴于迫切需要使服务供给与老年人的复杂需求相匹配,优化服务提供架构对于提高整体服务质量至关重要。

相似文献

5
Deep convolutional neural network and IoT technology for healthcare.用于医疗保健的深度卷积神经网络和物联网技术。
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.
10
Prediction of hepatitis E using machine learning models.使用机器学习模型预测戊型肝炎。
PLoS One. 2020 Sep 17;15(9):e0237750. doi: 10.1371/journal.pone.0237750. eCollection 2020.

本文引用的文献

6
Fast Support Vector Classification for Large-Scale Problems.针对大规模问题的快速支持向量分类
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6184-6195. doi: 10.1109/TPAMI.2021.3085969. Epub 2022 Sep 14.
7
Quality of Care In Nursing Homes In Brazil.巴西养老院的护理质量。
J Am Med Dir Assoc. 2017 Jul 1;18(7):636.e13-636.e19. doi: 10.1016/j.jamda.2017.04.007. Epub 2017 May 31.
9
Machine learning: Trends, perspectives, and prospects.机器学习:趋势、观点和展望。
Science. 2015 Jul 17;349(6245):255-60. doi: 10.1126/science.aaa8415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验