Suppr超能文献

用于预测食管癌患者放射性肺炎的生物剂量学特征。

Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients.

机构信息

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Nakhorn Pathom, Samutprakarn, Thailand.

Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand.

出版信息

Radiat Oncol. 2021 Nov 14;16(1):220. doi: 10.1186/s13014-021-01950-y.

Abstract

OBJECTIVE

The purpose of this study was to develop a model using dose volume histogram (DVH) and dosiomic features to predict the risk of radiation pneumonitis (RP) in the treatment of esophageal cancer with radiation therapy and to compare the performance of DVH and dosiomic features after adjustment for the effect of fractionation by correcting the dose to the equivalent dose in 2 Gy (EQD2).

MATERIALS AND METHODS

DVH features and dosiomic features were extracted from the 3D dose distribution of 101 esophageal cancer patients. The features were extracted with and without correction to EQD2. A predictive model was trained to predict RP grade ≥ 1 by logistic regression with L1 norm regularization. The models were then evaluated by the areas under the receiver operating characteristic curves (AUCs).

RESULT

The AUCs of both DVH-based models with and without correction of the dose to EQD2 were 0.66 and 0.66, respectively. Both dosiomic-based models with correction of the dose to EQD2 (AUC = 0.70) and without correction of the dose to EQD2 (AUC = 0.71) showed significant improvement in performance when compared to both DVH-based models. There were no significant differences in the performance of the model by correcting the dose to EQD2.

CONCLUSION

Dosiomic features can improve the performance of the predictive model for RP compared with that obtained with the DVH-based model.

摘要

目的

本研究旨在建立一个基于剂量体积直方图(DVH)和剂量学特征的模型,以预测食管癌放射治疗后放射性肺炎(RP)的风险,并比较在考虑分割效应后,通过校正至 2 Gy 等效剂量(EQD2)校正剂量后,DVH 和剂量学特征的性能。

材料和方法

从 101 例食管癌患者的三维剂量分布中提取了 DVH 特征和剂量学特征。这些特征是在未校正和校正至 EQD2 的情况下提取的。采用具有 L1 范数正则化的逻辑回归方法,训练预测 RP 分级≥1 的预测模型。然后通过接收者操作特征曲线下的面积(AUCs)来评估模型。

结果

未校正和校正至 EQD2 的基于 DVH 的模型的 AUC 分别为 0.66 和 0.66。校正至 EQD2 的剂量的基于 dosiomic 的两个模型(AUC=0.70)和未校正至 EQD2 的剂量的基于 dosiomic 的模型(AUC=0.71)的性能均有显著改善,与基于 DVH 的两个模型相比。校正至 EQD2 的剂量的模型的性能没有显著差异。

结论

与基于 DVH 的模型相比,剂量学特征可以提高 RP 预测模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb5/8591796/900fbc801ea6/13014_2021_1950_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验