Liang Deng, Liu Aiping, Wu Le, Li Chang, Qian Ruobing, Chen Xun
Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China.
Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009 Anhui China.
Cogn Neurodyn. 2024 Dec;18(6):3521-3534. doi: 10.1007/s11571-023-10026-4. Epub 2023 Nov 22.
Domain adaptation (DA) has been frequently used to solve the inter-patient variability problem in EEG-based seizure prediction. However, existing DA methods require access to the existing patients' data when adapting the model, which leads to privacy concerns. Besides, most of them treat the whole existing patients' data as one single source and attempt to minimize the discrepancy with the target patient. This manner ignores the inter-patient variability among source patients, making the adaptation more difficult. Considering theses issues simultaneously, we present a novel multi-source-free semi-supervised domain adaptive seizure prediction model (MSF-SSDA-SPM). MSF-SSDA-SPM considers each source patient as one single source and generates a pretrained model from each source. Without requiring access to the source data, MSF-SSDA-SPM performs adaptation just using these pretrained source models and limited labeled target data. Specifically, we freeze the classifiers of all the source models and optimize the source feature extractors in a joint manner. Then we design a knowledge distillation strategy to integrate the knowledge of these well-adapted source models into one single target model. On the CHB-MIT dataset, MSF-SSDA-SPM attains a sensitivity of 88.6%, a FPR of 0.182/h and an AUC of 0.856; on the Kaggle dataset, it achieves 78.6%, 0.178/h and 0.784, respectively. Experimental results demonstrate that MSF-SSDA-SPM achieves both high privacy-protection and promising prediction performance.
域适应(DA)已被频繁用于解决基于脑电图的癫痫发作预测中的患者间变异性问题。然而,现有的DA方法在调整模型时需要访问现有患者的数据,这引发了隐私问题。此外,它们大多将所有现有患者的数据视为单一来源,并试图最小化与目标患者的差异。这种方式忽略了源患者之间的患者间变异性,使得适应更加困难。综合考虑这些问题,我们提出了一种新颖的无多源半监督域自适应癫痫发作预测模型(MSF-SSDA-SPM)。MSF-SSDA-SPM将每个源患者视为一个单独的源,并从每个源生成一个预训练模型。无需访问源数据,MSF-SSDA-SPM仅使用这些预训练的源模型和有限的带标签目标数据来进行适应。具体而言,我们冻结所有源模型的分类器,并以联合方式优化源特征提取器。然后,我们设计了一种知识蒸馏策略,将这些适应性良好的源模型的知识整合到一个单一的目标模型中。在CHB-MIT数据集上,MSF-SSDA-SPM的灵敏度达到88.6%,误报率为0.182/小时,曲线下面积为0.856;在Kaggle数据集上,它分别达到78.6%、0.178/小时和0.784。实验结果表明,MSF-SSDA-SPM既实现了高度的隐私保护,又具有良好的预测性能。