Suppr超能文献

用于癫痫发作预测的隐私保护多源半监督域适应

Privacy-preserving multi-source semi-supervised domain adaptation for seizure prediction.

作者信息

Liang Deng, Liu Aiping, Wu Le, Li Chang, Qian Ruobing, Chen Xun

机构信息

Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China.

Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009 Anhui China.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):3521-3534. doi: 10.1007/s11571-023-10026-4. Epub 2023 Nov 22.

Abstract

Domain adaptation (DA) has been frequently used to solve the inter-patient variability problem in EEG-based seizure prediction. However, existing DA methods require access to the existing patients' data when adapting the model, which leads to privacy concerns. Besides, most of them treat the whole existing patients' data as one single source and attempt to minimize the discrepancy with the target patient. This manner ignores the inter-patient variability among source patients, making the adaptation more difficult. Considering theses issues simultaneously, we present a novel multi-source-free semi-supervised domain adaptive seizure prediction model (MSF-SSDA-SPM). MSF-SSDA-SPM considers each source patient as one single source and generates a pretrained model from each source. Without requiring access to the source data, MSF-SSDA-SPM performs adaptation just using these pretrained source models and limited labeled target data. Specifically, we freeze the classifiers of all the source models and optimize the source feature extractors in a joint manner. Then we design a knowledge distillation strategy to integrate the knowledge of these well-adapted source models into one single target model. On the CHB-MIT dataset, MSF-SSDA-SPM attains a sensitivity of 88.6%, a FPR of 0.182/h and an AUC of 0.856; on the Kaggle dataset, it achieves 78.6%, 0.178/h and 0.784, respectively. Experimental results demonstrate that MSF-SSDA-SPM achieves both high privacy-protection and promising prediction performance.

摘要

域适应(DA)已被频繁用于解决基于脑电图的癫痫发作预测中的患者间变异性问题。然而,现有的DA方法在调整模型时需要访问现有患者的数据,这引发了隐私问题。此外,它们大多将所有现有患者的数据视为单一来源,并试图最小化与目标患者的差异。这种方式忽略了源患者之间的患者间变异性,使得适应更加困难。综合考虑这些问题,我们提出了一种新颖的无多源半监督域自适应癫痫发作预测模型(MSF-SSDA-SPM)。MSF-SSDA-SPM将每个源患者视为一个单独的源,并从每个源生成一个预训练模型。无需访问源数据,MSF-SSDA-SPM仅使用这些预训练的源模型和有限的带标签目标数据来进行适应。具体而言,我们冻结所有源模型的分类器,并以联合方式优化源特征提取器。然后,我们设计了一种知识蒸馏策略,将这些适应性良好的源模型的知识整合到一个单一的目标模型中。在CHB-MIT数据集上,MSF-SSDA-SPM的灵敏度达到88.6%,误报率为0.182/小时,曲线下面积为0.856;在Kaggle数据集上,它分别达到78.6%、0.178/小时和0.784。实验结果表明,MSF-SSDA-SPM既实现了高度的隐私保护,又具有良好的预测性能。

相似文献

本文引用的文献

3
Classification of the Epileptic Seizure Onset Zone Based on Partial Annotation.基于部分标注的癫痫发作起始区分类
Cogn Neurodyn. 2023 Jun;17(3):703-713. doi: 10.1007/s11571-022-09857-4. Epub 2022 Aug 18.
6
Generalizable epileptic seizures prediction based on deep transfer learning.基于深度迁移学习的可推广癫痫发作预测
Cogn Neurodyn. 2023 Feb;17(1):119-131. doi: 10.1007/s11571-022-09809-y. Epub 2022 Apr 29.
7
EEG-Based Seizure Prediction via Model Uncertainty Learning.基于脑电图通过模型不确定性学习进行癫痫发作预测
IEEE Trans Neural Syst Rehabil Eng. 2023;31:180-191. doi: 10.1109/TNSRE.2022.3217929. Epub 2023 Jan 30.
8
A general sample-weighted framework for epileptic seizure prediction.一种通用的基于样本加权的癫痫发作预测框架。
Comput Biol Med. 2022 Nov;150:106169. doi: 10.1016/j.compbiomed.2022.106169. Epub 2022 Oct 5.
9
Multi-Source Decentralized Transfer for Privacy-Preserving BCIs.多源去中心化迁移的隐私保护脑机接口。
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2710-2720. doi: 10.1109/TNSRE.2022.3207494. Epub 2022 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验