Suppr超能文献

一类在具有多个树突的神经元中使用不同激活函数的新型混沌吸引子。

A new class of chaotic attractors using different activation functions in neuron with multi dendrites.

作者信息

Selmi Kaouther, Bouallegue Kais, Soufi Youcef

机构信息

FSM, Electronics and Microelectronics Laboratory, University of Monastir, Monastir, Tunisia.

ISSATs, University of Sousse, Sousse, Tunisia.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):3427-3446. doi: 10.1007/s11571-024-10124-x. Epub 2024 May 24.

Abstract

This paper introduces a novel class of chaotic attractors by lever- aging different activation functions within neurons possessing multiple dendrites. We propose a comprehensive framework where the activation functions in neurons are varied, allowing for diverse behaviors such as amplification, fluctuation, and folding of scrolls within the resulting chaotic attractors. By employing wavelet functions and other model-specific activation functions, we demonstrate the capability to modify scroll characteristics, including size and direction. Furthermore, a model featuring neurons with varied activation functions is elaborated upon, showcasing the versatility of this approach. Through numerical simulations, we validate the efficacy of our proposed theoretical frame-work, offering new insights into the behavior of chaotic attractors. The results highlight the potential for generating higher-dimensional hyperchaotic attractors with enhanced complexity and applicability in various domains. Numerical simulations are given to show the effectiveness of the proposed theoretical results using C +  + .

摘要

本文通过利用具有多个树突的神经元内不同的激活函数,引入了一类新型的混沌吸引子。我们提出了一个综合框架,其中神经元中的激活函数是可变的,从而在生成的混沌吸引子中允许出现诸如卷轴的放大、波动和折叠等多种行为。通过使用小波函数和其他特定于模型的激活函数,我们展示了修改卷轴特征(包括大小和方向)的能力。此外,详细阐述了一个具有可变激活函数神经元的模型,展示了这种方法的通用性。通过数值模拟,我们验证了所提出理论框架的有效性,为混沌吸引子的行为提供了新的见解。结果突出了生成具有更高复杂性且在各个领域具有更强适用性的高维超混沌吸引子的潜力。给出了数值模拟以展示使用C++ 所提出理论结果的有效性。

相似文献

本文引用的文献

1
Chaotic attractors with separated scrolls.
Chaos. 2015 Jul;25(7):073108. doi: 10.1063/1.4923302.
2
The Bifurcating Neuron network 1.分叉神经元网络1。
Neural Netw. 2001 Jan;14(1):115-31. doi: 10.1016/s0893-6080(00)00083-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验