Suppr超能文献

基于径向基函数神经网络的非线性变阶分数阶超混沌陈系统的混沌分析

Chaos analysis of nonlinear variable order fractional hyperchaotic Chen system utilizing radial basis function neural network.

作者信息

Hussain Sadam, Bashir Zia, Malik M G Abbas

机构信息

Department of Mathematics, Quaid-i-Azam University, Islamabad, 45320 Pakistan.

College of Computer and Information Science, Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2831-2855. doi: 10.1007/s11571-024-10118-9. Epub 2024 May 18.

Abstract

This research explores the various chaotic features of the hyperchaotic Chen dynamical system within a variable order fractional (VOF) calculus framework, employing an innovative approach with a nonlinear and adaptive radial basis function neural network. The study begins by computing the numerical solution of VOF differential equations for the hyperchaotic Chen system through a numerical scheme using the Caputo-Fabrizio derivative across a spectrum of different system control parameters. Subsequently, a comprehensive parametric model is formulated using RBFNN, considering the system's various initial values. We systematically investigate the various chaotic attractors of the proposed system, employing statistical analysis, phase space reconstruction, and Lyapunov exponent. Additionally, we assess the effectiveness of the proposed computational RBFNN model using the Root Mean Square Error statistic. Importantly, the obtained results closely align with those derived from numerical algorithms, emphasizing the high accuracy and reliability of the designed network. The outcomes of this study have implications for studying chaos with variable fractional derivatives, with applications across various scientific and engineering domains. This work advances the understanding and applications of variable order fractional dynamics.

摘要

本研究在变阶分数(VOF)微积分框架内,采用非线性自适应径向基函数神经网络的创新方法,探索超混沌陈氏动力系统的各种混沌特征。该研究首先通过使用Caputo-Fabrizio导数的数值格式,针对不同系统控制参数谱计算超混沌陈氏系统的VOF微分方程的数值解。随后,考虑系统的各种初始值,使用径向基函数神经网络(RBFNN)建立了一个综合参数模型。我们采用统计分析、相空间重构和李雅普诺夫指数,系统地研究了所提出系统的各种混沌吸引子。此外,我们使用均方根误差统计量评估所提出的计算径向基函数神经网络模型的有效性。重要的是,所获得的结果与数值算法得出的结果紧密吻合,强调了所设计网络的高精度和可靠性。本研究结果对于用变分数导数研究混沌具有重要意义,在各个科学和工程领域都有应用。这项工作推动了对变阶分数动力学的理解和应用。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验