Suppr超能文献

MMORF-FSL的多模态配准框架。

MMORF-FSL's MultiMOdal Registration Framework.

作者信息

Lange Frederik J, Arthofer Christoph, Bartsch Andreas, Douaud Gwenaëlle, McCarthy Paul, Smith Stephen M, Andersson Jesper L R

机构信息

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany.

出版信息

Imaging Neurosci (Camb). 2024 Mar 1;2:1-30. doi: 10.1162/imag_a_00100.

Abstract

We present MMORF-FSL's MultiMOdal Registration Framework-a newly released nonlinear image registration tool designed primarily for application to magnetic resonance imaging (MRI) images of the brain. MMORF is capable of simultaneously optimising both displacement and rotational transformations within a single registration framework by leveraging rich information from multiple scalar and tensor modalities. The regularisation employed in MMORF promotes local rigidity in the deformation, and we have previously demonstrated how this effectively controls both shape and size distortion, leading to more biologically plausible warps. The performance of MMORF is benchmarked against three established nonlinear registration methods-FNIRT, ANTs, and DR-TAMAS-across four domains: FreeSurfer label overlap, diffusion tensor imaging (DTI) similarity, task-fMRI cluster mass, and distortion. The evaluation is based on 100 unrelated subjects from the Human Connectome Project (HCP) dataset registered to the Oxford-MultiModal-1 (OMM-1) multimodal template via either the T1w contrast alone or in combination with a DTI/DTI-derived contrast. Results show that MMORF is the most consistently high-performing method across all domains-both in terms of accuracy and levels of distortion. MMORF is available as part of FSL, and its inputs and outputs are fully compatible with existing workflows. We believe that MMORF will be a valuable tool for the neuroimaging community, regardless of the domain of any downstream analysis, providing state-of-the-art registration performance that integrates into the rich and widely adopted suite of analysis tools in FSL.

摘要

我们展示了MMORF-FSL的多模态配准框架——一种新发布的非线性图像配准工具,主要设计用于应用于脑部磁共振成像(MRI)图像。MMORF能够通过利用来自多个标量和张量模态的丰富信息,在单个配准框架内同时优化位移和旋转变换。MMORF中采用的正则化促进了变形中的局部刚性,并且我们之前已经证明了这如何有效地控制形状和尺寸失真,从而导致更符合生物学原理的扭曲。MMORF的性能在四个领域与三种已确立的非线性配准方法——FNIRT、ANTs和DR-TAMAS进行了基准测试:FreeSurfer标签重叠、扩散张量成像(DTI)相似性、任务功能磁共振成像(fMRI)簇质量和失真。评估基于来自人类连接组计划(HCP)数据集的100名不相关受试者,这些受试者通过单独的T1w对比度或与DTI/DTI衍生对比度相结合,配准到牛津多模态-1(OMM-1)多模态模板。结果表明,MMORF在所有领域都是性能最稳定且高效的方法——在准确性和失真水平方面都是如此。MMORF作为FSL的一部分可用,其输入和输出与现有工作流程完全兼容。我们相信,无论任何下游分析的领域如何,MMORF都将成为神经成像社区的一个有价值的工具,提供集成到FSL中丰富且广泛采用的分析工具套件中的最先进配准性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9f5/7617249/1e87d103b61d/EMS201863-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验