Battaglia Stefano, Rossmannek Max, Rybkin Vladimir V, Tavernelli Ivano, Hutter Jürg
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057 Switzerland.
IBM Quantum, IBM Research-Zurich, Säumerstrasse 4, Rüschlikon, 8803 Switzerland.
NPJ Comput Mater. 2024;10(1):297. doi: 10.1038/s41524-024-01477-2. Epub 2024 Dec 19.
We developed a general framework for hybrid quantum-classical computing of molecular and periodic embedding approaches based on an orbital space separation of the fragment and environment degrees of freedom. We demonstrate its potential by presenting a specific implementation of periodic range-separated DFT coupled to a quantum circuit ansatz, whereby the variational quantum eigensolver and the quantum equation-of-motion algorithm are used to obtain the low-lying spectrum of the embedded fragment Hamiltonian. The application of this scheme to study localized electronic states in materials is showcased through the accurate prediction of the optical properties of the neutral oxygen vacancy in magnesium oxide (MgO). Despite some discrepancies in the position of the main absorption band, the method demonstrates competitive performance compared to state-of-the-art ab initio approaches, particularly evidenced by the excellent agreement with the experimental photoluminescence emission peak.
我们基于片段和环境自由度的轨道空间分离,开发了一种用于分子和周期性嵌入方法的混合量子-经典计算的通用框架。我们通过展示周期性范围分离密度泛函理论(DFT)与量子电路假设相结合的具体实现方式,证明了其潜力,其中变分量子本征求解器和量子运动方程算法用于获得嵌入片段哈密顿量的低能谱。通过对氧化镁(MgO)中中性氧空位光学性质的准确预测,展示了该方案在研究材料中局域电子态方面的应用。尽管在主吸收带位置上存在一些差异,但该方法与最先进的从头算方法相比仍表现出有竞争力的性能,特别是与实验光致发光发射峰的出色吻合证明了这一点。