Suppr超能文献

工程化特征嵌入与深度学习相结合:一种改进骨髓细胞分类及提高模型透明度的新策略。

Engineered feature embeddings meet deep learning: A novel strategy to improve bone marrow cell classification and model transparency.

作者信息

Tarquino Jonathan, Rodríguez Jhonathan, Becerra David, Roa-Peña Lucia, Romero Eduardo

机构信息

Computer Imaging and Medical Application Laboratory, Universidad Nacional de Colombia, Bogotá 111321, Colombia.

Department of Pathology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.

出版信息

J Pathol Inform. 2024 Jul 3;15:100390. doi: 10.1016/j.jpi.2024.100390. eCollection 2024 Dec.

Abstract

Cytomorphology evaluation of bone marrow cell is the initial step to diagnose different hematological diseases. This assessment is still manually performed by trained specialists, who may be a bottleneck within the clinical process. Deep learning algorithms are a promising approach to automate this bone marrow cell evaluation. These artificial intelligence models have focused on limited cell subtypes, mainly associated to a particular disease, and are frequently presented as black boxes. The herein introduced strategy presents an engineered feature representation, the region-attention embedding, which improves the deep learning classification performance of a cytomorphology with 21 bone marrow cell subtypes. This embedding is built upon a specific organization of cytology features within a squared matrix by distributing them after pre-segmented cell regions, i.e., cytoplasm, nucleus, and whole-cell. This novel cell image representation, aimed to preserve spatial/regional relations, is used as input of the network. Combination of region-attention embedding and deep learning networks (Xception and ResNet50) provides local relevance associated to image regions, adding up interpretable information to the prediction. Additionally, this approach is evaluated in a public database with the largest number of cell subtypes (21) by a thorough evaluation scheme with three iterations of a 3-fold cross-validation, performed in 80% of the images ( = 89,484), and a testing process in an unseen set of images composed by the remaining 20% of the images ( = 22,371). This evaluation process demonstrates the introduced strategy outperforms previously published approaches in an equivalent validation set, with a f1-score of 0.82, and presented competitive results on the unseen data partition with a f1-score of 0.56.

摘要

骨髓细胞的细胞形态学评估是诊断不同血液系统疾病的第一步。这项评估目前仍由训练有素的专家手动进行,这可能成为临床过程中的一个瓶颈。深度学习算法是实现骨髓细胞评估自动化的一种很有前景的方法。这些人工智能模型主要关注有限的细胞亚型,且主要与特定疾病相关,并且常常被视为黑箱。本文介绍的策略提出了一种经过设计的特征表示方法,即区域注意力嵌入,它提高了对21种骨髓细胞亚型进行细胞形态学深度学习分类的性能。这种嵌入是基于细胞学特征在方形矩阵中的特定组织构建的,通过在预先分割的细胞区域(即细胞质、细胞核和全细胞)之后分布这些特征来实现。这种旨在保留空间/区域关系的新型细胞图像表示方法被用作网络的输入。区域注意力嵌入与深度学习网络(Xception和ResNet50)的结合提供了与图像区域相关的局部相关性,为预测增加了可解释的信息。此外,该方法在一个拥有最大数量细胞亚型(21种)的公共数据库中进行评估,采用了一种全面的评估方案,即进行三次3折交叉验证迭代,其中80%的图像(=89484张)用于验证,其余20%的图像(=22371张)用于在一个未见图像集上进行测试。该评估过程表明,在等效验证集中,所介绍的策略优于先前发表的方法,f1分数为0.82,并且在未见数据分区上也呈现出具有竞争力的结果,f1分数为0.56。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/725c/11662281/54e7478e64cd/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验