Wang Kunlun, Ait-Ahmad Kaoutar, Kupp Samuel D, Sims Zachary, Cramer Eric, Sayar Zeynep, Yu Jessica, Wong Melissa H, Mills Gordon B, Eksi S Ece, Chang Young Hwan
Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA.
Department of Biomedical Engineering and Computational Biology Program, OHSU, Portland, OR, USA.
bioRxiv. 2024 Dec 10:2024.12.06.626879. doi: 10.1101/2024.12.06.626879.
Multiplexed tissue imaging (MTI) technologies enable high-dimensional spatial analysis of tumor microenvironments but face challenges with technical variability in staining intensities. Existing normalization methods, including z-score, ComBat, and MxNorm, often fail to account for the heterogeneous, right-skewed expression patterns of MTI data, compromising signal alignment and downstream analyses. We present UniFORM, a non-parametric, Python-based pipeline for normalizing both feature- and pixel-level MTI data. UniFORM preserves marker intensity distribution shapes while maintaining positive population proportions without prior assumptions and uses automated normalization. Benchmarking across two distinct MTI platforms and datasets demonstrates that UniFORM outperforms existing methods in mitigating batch effects while maintaining biological signal fidelity. This is evidenced by improved marker distribution alignment, enhanced kBET scores, and improved downstream analyses such as UMAP visualizations and Leiden clustering. UniFORM also introduces a novel guided fine-tuning option for complex and heterogeneous datasets. Although optimized for fluorescence-based platforms, UniFORM provides a scalable and robust solution for MTI data normalization, enabling accurate and biologically meaningful interpretations.
多重组织成像(MTI)技术能够对肿瘤微环境进行高维空间分析,但在染色强度的技术变异性方面面临挑战。现有的归一化方法,包括z分数、ComBat和MxNorm,往往无法考虑MTI数据的异质性、右偏态表达模式,从而影响信号对齐和下游分析。我们提出了UniFORM,这是一个基于Python的非参数管道,用于对特征级和像素级的MTI数据进行归一化。UniFORM在不做先验假设的情况下保留标记强度分布形状,同时保持阳性群体比例,并使用自动归一化。在两个不同的MTI平台和数据集上进行的基准测试表明,UniFORM在减轻批次效应的同时保持生物信号保真度方面优于现有方法。这通过改进的标记分布对齐、提高的kBET分数以及改进的下游分析(如UMAP可视化和 Leiden聚类)得到证明。UniFORM还为复杂和异质数据集引入了一种新颖的引导微调选项。尽管针对基于荧光的平台进行了优化,但UniFORM为MTI数据归一化提供了一种可扩展且稳健的解决方案,能够进行准确且具有生物学意义的解释。