Adams Rhea, Zhao Walter, Hu Siyuan, Lyu Wenjiao, Huynh Khoi Minh, Ahmad Sahar, Ma Dan, Yap Pew-Thian
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
bioRxiv. 2024 Dec 10:2024.12.05.627056. doi: 10.1101/2024.12.05.627056.
Magnetic resonance imaging (MRI) is commonly used in healthcare for its ability to generate diverse tissue contrasts without ionizing radiation. However, this flexibility complicates downstream analysis, as computational tools are often tailored to specific MRI types and lack generalizability across the full spectrum of scans used in healthcare. Here, we introduce a versatile framework for the development and validation of pan-contrast AI models that can exhaustively cater to the full spectrum of scans achievable with MRI, enabling model deployment across scanner models, scan types, and age groups. Core to our framework is UltimateSynth, a technology that combines tissue physiology and MR physics in synthesizing realistic images across a comprehensive range of contrasts to bolster the AI development life cycle through efficient data labeling, generalizable model training, and thorough performance benchmarking. UltimateSynth is a platform for pan-contrast generalization of contrast-specific tools. We showcase the effectiveness of UltimateSynth by training an off-the-shelf U-Net to generalize anatomical segmentation across over 150,000 unique MRI contrasts, achieving robust tissue volumetric quantification with exceptionally low variability below 2%.
磁共振成像(MRI)因其能够在不使用电离辐射的情况下生成多样的组织对比度而在医疗保健中被广泛使用。然而,这种灵活性使下游分析变得复杂,因为计算工具通常是针对特定的MRI类型定制的,并且在医疗保健中使用的全谱扫描中缺乏通用性。在这里,我们介绍了一个通用框架,用于开发和验证全对比度AI模型,该模型可以全面满足MRI可实现的全谱扫描需求,从而实现跨扫描仪型号、扫描类型和年龄组的模型部署。我们框架的核心是UltimateSynth,这是一种将组织生理学和磁共振物理相结合的技术,可在广泛的对比度范围内合成逼真的图像,通过高效的数据标记、通用的模型训练和全面的性能基准测试来支持AI开发生命周期。UltimateSynth是一个用于特定对比度工具进行全对比度泛化的平台。我们通过训练一个现成的U-Net来展示UltimateSynth的有效性,该U-Net能够在超过150,000种独特的MRI对比度上进行解剖分割泛化,实现稳健的组织体积量化,变异性极低,低于2%。