Suppr超能文献

一种用于多模态脑3T磁共振成像(MRI)标准化方法开发与比较的资源。

A resource for development and comparison of multimodal brain 3 T MRI harmonisation approaches.

作者信息

Warrington Shaun, Ntata Asante, Mougin Olivier, Campbell Jon, Torchi Andrea, Craig Martin, Alfaro-Almagro Fidel, Miller Karla L, Morgan Paul S, Jenkinson Mark, Sotiropoulos Stamatios N

机构信息

Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.

出版信息

Imaging Neurosci (Camb). 2023 Dec 4;1. doi: 10.1162/imag_a_00042. eCollection 2023.

Abstract

Despite the huge potential of magnetic resonance imaging (MRI) in mapping and exploring the brain, MRI measures can often be limited in their consistency, reproducibility, and accuracy which subsequently restricts their quantifiability. Nuisance nonbiological factors, such as hardware, software, calibration differences between scanners, and post-processing options, can contribute to, or drive trends in, neuroimaging features to an extent that interferes with biological variability. Such lack of consistency, known as lack of harmonisation, across neuroimaging datasets poses a great challenge for our capabilities in quantitative MRI. Here, we build a new resource for comprehensively mapping the extent of the problem and objectively evaluating neuroimaging harmonisation approaches. We use a travelling-heads paradigm consisting of multimodal MRI data of 10 travelling subjects, each scanned at five different sites on six different 3 T scanners from all the three major vendors and using five neuroimaging modalities, providing more comprehensive coverage than before. We also acquire multiple within-scanner repeats for a subset of subjects, setting baselines for multimodal scan-rescan variability. Having extracted hundreds of imaging-derived phenotypes, we compare three forms of variability: (i) between-scanner, (ii) within-scanner (within-subject), and (iii) biological (between-subject). We characterise the reliability of features across scanners and use our resource as a testbed to enable new investigations that until now have been relatively unexplored. Specifically, we identify optimal pipeline processing steps that minimise between-scanner variability in extracted features (implicit harmonisation). We also test the performance of post-processing harmonisation tools (explicit harmonisation) and specifically check their efficiency in reducing between-scanner variability against baseline standards provided by our data. Our explorations allow us to come up with good practice suggestions on processing steps and sets of features where results are more consistent, while our publicly released dataset (which we refer to as ON-Harmony) establishes references for future studies in this field.

摘要

尽管磁共振成像(MRI)在描绘和探索大脑方面具有巨大潜力,但MRI测量在一致性、可重复性和准确性方面往往存在局限性,这随后限制了它们的可量化性。诸如硬件、软件、扫描仪之间的校准差异以及后处理选项等令人讨厌的非生物因素,可能会在一定程度上导致神经影像特征的变化趋势,进而干扰生物变异性。这种跨神经影像数据集的一致性缺失,即所谓的缺乏协调,对我们在定量MRI方面的能力构成了巨大挑战。在此,我们构建了一个新资源,用于全面描绘问题的范围并客观评估神经影像协调方法。我们采用了一种移动头部范式,该范式包含10名移动受试者的多模态MRI数据,每个受试者在来自所有三大供应商的六台不同的3T扫描仪上的五个不同部位进行扫描,并使用五种神经影像模态,提供了比以往更全面的覆盖范围。我们还为一部分受试者进行了多次扫描仪内重复扫描,设定了多模态扫描 - 重扫变异性的基线。在提取了数百种影像学衍生表型后,我们比较了三种变异性形式:(i)扫描仪间变异性,(ii)扫描仪内(受试者内)变异性,以及(iii)生物(受试者间)变异性。我们表征了跨扫描仪特征的可靠性,并将我们的资源用作试验台,以开展迄今为止相对未被探索的新研究。具体而言,我们确定了最佳的流程处理步骤,以最小化提取特征中的扫描仪间变异性(隐式协调)。我们还测试了后处理协调工具的性能(显式协调),并特别对照我们的数据提供的基线标准检查它们在降低扫描仪间变异性方面的效率。我们的探索使我们能够就处理步骤和特征集提出良好实践建议,在这些方面结果更加一致,而我们公开发布的数据集(我们称之为ON - Harmony)为该领域的未来研究建立了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/025d/12007558/3b294be6fea4/imag_a_00042_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验