Suppr超能文献

使用结构脑 MRI 和机器学习框架的个人特征数据进行 ADHD 诊断。

ADHD diagnosis using structural brain MRI and personal characteristic data with machine learning framework.

机构信息

Department of Computer Science, University of Delhi, Delhi, India.

Department of Computer Science, University of Delhi, Delhi, India.

出版信息

Psychiatry Res Neuroimaging. 2023 Sep;334:111689. doi: 10.1016/j.pscychresns.2023.111689. Epub 2023 Jul 20.

Abstract

An essential yet challenging task is an automatic diagnosis of attention-deficit/hyperactivity disorder (ADHD) without manual intervention. The present study emphasises utilizing structural MRI and personal characteristic (PC) data for developing an automated diagnostic system for ADHD classification. Here, an age-balanced dataset of 316 ADHD and 316 Typically Developing Children (TDC) was prepared from the publicly available dataset. We extracted volumetric features from gray matter (GM) volumes from brain regions defined by Automated Anatomical Labelling (AAL3) atlas and cortical thickness-based (CT) features using the Destrieux atlas. A set of salient features were selected independently using minimum redundancy and maximum relevance (mRMR) and ensemble feature selection (EFS) methods. Decision models were trained using five well-known classifiers: K-nearest neighbours, logistic regression, linear Support Vector Machine (SVM), radial-based SVM (RBSVM), and Random Forest. The performance of the proposed system was evaluated using accuracy, recall, and specificity with ten runs of a ten-fold cross-validation scheme. We run seven experiments by considering different combinations of features. The maximum classification accuracy of 75% was obtained with CT and PC features with RBSVM and SVM with the EFS. An increase in GM volume in fifteen brain regions and loss of cortical thickness in twenty-seven brain regions were observed.

摘要

一个重要但具有挑战性的任务是在无需人工干预的情况下自动诊断注意力缺陷多动障碍(ADHD)。本研究强调利用结构磁共振成像和个人特征(PC)数据为 ADHD 分类开发自动化诊断系统。在这里,我们从公开可用的数据集准备了一个年龄平衡的 316 名 ADHD 和 316 名正常发育儿童(TDC)的数据集。我们从自动解剖标记(AAL3)图谱定义的脑区的灰质(GM)体积中提取体积特征,并使用 Destrieux 图谱提取皮质厚度(CT)特征。使用最小冗余和最大相关性(mRMR)和集成特征选择(EFS)方法独立选择一组显著特征。使用 K-最近邻、逻辑回归、线性支持向量机(SVM)、基于径向的 SVM(RBSVM)和随机森林这五个著名的分类器训练决策模型。使用十折交叉验证方案的十次运行评估所提出系统的性能,评估指标为准确性、召回率和特异性。我们考虑了不同特征组合进行了七项实验。使用 EFS 的 RBSVM 和 SVM 与 CT 和 PC 特征的最大分类准确率为 75%。观察到十五个脑区的 GM 体积增加和二十七个脑区的皮质厚度损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验