Suppr超能文献

牙科放射学中的人工智能——利用ChatGPT提高报告效率:比较研究

AI in Dental Radiology-Improving the Efficiency of Reporting With ChatGPT: Comparative Study.

作者信息

Stephan Daniel, Bertsch Annika, Burwinkel Matthias, Vinayahalingam Shankeeth, Al-Nawas Bilal, Kämmerer Peer W, Thiem Daniel Ge

机构信息

Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany.

Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Nijmegen, Netherlands.

出版信息

J Med Internet Res. 2024 Dec 23;26:e60684. doi: 10.2196/60684.

Abstract

BACKGROUND

Structured and standardized documentation is critical for accurately recording diagnostic findings, treatment plans, and patient progress in health care. Manual documentation can be labor-intensive and error-prone, especially under time constraints, prompting interest in the potential of artificial intelligence (AI) to automate and optimize these processes, particularly in medical documentation.

OBJECTIVE

This study aimed to assess the effectiveness of ChatGPT (OpenAI) in generating radiology reports from dental panoramic radiographs, comparing the performance of AI-generated reports with those manually created by dental students.

METHODS

A total of 100 dental students were tasked with analyzing panoramic radiographs and generating radiology reports manually or assisted by ChatGPT using a standardized prompt derived from a diagnostic checklist.

RESULTS

Reports generated by ChatGPT showed a high degree of textual similarity to reference reports; however, they often lacked critical diagnostic information typically included in reports authored by students. Despite this, the AI-generated reports were consistent in being error-free and matched the readability of student-generated reports.

CONCLUSIONS

The findings from this study suggest that ChatGPT has considerable potential for generating radiology reports, although it currently faces challenges in accuracy and reliability. This underscores the need for further refinement in the AI's prompt design and the development of robust validation mechanisms to enhance its use in clinical settings.

摘要

背景

结构化和标准化的文档记录对于在医疗保健中准确记录诊断结果、治疗计划和患者进展至关重要。手动文档记录可能耗费大量人力且容易出错,尤其是在时间限制下,这引发了人们对人工智能(AI)自动化和优化这些流程的潜力的兴趣,特别是在医疗文档方面。

目的

本研究旨在评估ChatGPT(OpenAI)从牙科全景X光片生成放射学报告的有效性,并将人工智能生成的报告与牙科学生手动创建的报告的性能进行比较。

方法

共有100名牙科学生被要求分析全景X光片,并使用从诊断清单得出的标准化提示手动生成或在ChatGPT辅助下生成放射学报告。

结果

ChatGPT生成的报告与参考报告显示出高度的文本相似性;然而,它们通常缺少学生撰写的报告中通常包含的关键诊断信息。尽管如此,人工智能生成的报告在无错误方面是一致的,并且与学生生成的报告的可读性相当。

结论

本研究的结果表明,ChatGPT在生成放射学报告方面具有相当大的潜力,尽管它目前在准确性和可靠性方面面临挑战。这凸显了进一步完善人工智能的提示设计以及开发强大的验证机制以增强其在临床环境中的应用的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c9/11704643/920e64f68c6c/jmir_v26i1e60684_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验