Sousa Patrícia, Silva Laurentina, Câmara José S, Guedes de Pinho Paula, Perestrelo Rosa
CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
Hospital Dr Nélio Mendonça, SESARAM, EPERAM - Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, 9004-514 Funchal, Portugal.
Mol Omics. 2025 Mar 10;21(2):108-121. doi: 10.1039/d4mo00187g.
Cancer remains the second leading cause of death worldwide, surpassed only by cardiovascular disease. From the different types of cancer, pancreatic cancer (PaC) has one of the lowest survival rates, with a survival rate of about 20% after the first year of diagnosis and about 8% after 5 years. The lack of highly sensitive and specific biomarkers, together with the absence of symptoms in the early stages, determines a late diagnosis, which is associated with a decrease in the effectiveness of medical intervention, regardless of its nature - surgery and/or chemotherapy. This review provides an updated overview of recent studies combining multi-OMICs approaches (, proteomics, metabolomics) with analytical tools, highlighting the synergy between high-throughput molecular data generation and precise analytical tools such as LC-MS, GC-MS and MALDI-TOF MS. This combination significantly improves the detection, quantification and identification of biomolecules in complex biological systems and represents the latest advances in understanding PaC management and the search for effective diagnostic tools. Large-scale data analysis coupled with bioinformatics tools enables the identification of specific genetic mutations, gene expression patterns, pathways, networks, protein modifications and metabolic signatures associated with PaC pathogenesis, progression and treatment response through the integration of multi-OMICs data.
癌症仍然是全球第二大死因,仅次于心血管疾病。在不同类型的癌症中,胰腺癌(PaC)的生存率最低,诊断后第一年的生存率约为20%,5年后约为8%。缺乏高灵敏度和特异性的生物标志物,加上早期没有症状,导致诊断延迟,这与医疗干预(无论其性质是手术和/或化疗)效果的降低有关。本综述提供了近期研究的最新概述,这些研究将多组学方法(蛋白质组学、代谢组学)与分析工具相结合,突出了高通量分子数据生成与诸如液相色谱-质谱联用(LC-MS)、气相色谱-质谱联用(GC-MS)和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)等精确分析工具之间的协同作用。这种结合显著提高了复杂生物系统中生物分子的检测、定量和鉴定能力,代表了在理解胰腺癌管理和寻找有效诊断工具方面的最新进展。通过整合多组学数据,大规模数据分析与生物信息学工具相结合,能够识别与胰腺癌发病机制、进展和治疗反应相关的特定基因突变、基因表达模式、信号通路、网络、蛋白质修饰和代谢特征。