Suppr超能文献

用于多结光伏的钙钛矿前驱体溶液的调控

Steering perovskite precursor solutions for multijunction photovoltaics.

作者信息

Hu Shuaifeng, Wang Junke, Zhao Pei, Pascual Jorge, Wang Jianan, Rombach Florine, Dasgupta Akash, Liu Wentao, Truong Minh Anh, Zhu He, Kober-Czerny Manuel, Drysdale James N, Smith Joel A, Yuan Zhongcheng, Aalbers Guus J W, Schipper Nick R M, Yao Jin, Nakano Kyohei, Turren-Cruz Silver-Hamill, Dallmann André, Christoforo M Greyson, Ball James M, McMeekin David P, Zaininger Karl-Augustin, Liu Zonghao, Noel Nakita K, Tajima Keisuke, Chen Wei, Ehara Masahiro, Janssen René A J, Wakamiya Atsushi, Snaith Henry J

机构信息

Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.

Institute for Chemical Research, Kyoto University, Gokasho Uji-city, Kyoto, Japan.

出版信息

Nature. 2025 Mar;639(8053):93-101. doi: 10.1038/s41586-024-08546-y. Epub 2024 Dec 23.

Abstract

Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells, for which improving narrow-bandgap (NBG) tin-lead perovskites is critical for thin-film devices. Here, with a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallization and ammonium in improving film optoelectronic properties. Materials that combine these two functional groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules. Our enhanced tin-lead perovskite layer allows us to fabricate solar cells with PCEs of 23.9%, 29.7% (certified 29.26%) and 28.7% for single-junction, double-junction and triple-junction devices, respectively. Our 1-cm triple-junction devices show PCEs of 28.4% (certified 27.28%). Encapsulated triple-junction cells maintain 80% of their initial efficiencies after 860 h maximum power point tracking (MPPT) in ambient. We further fabricate quadruple-junction devices and obtain PCEs of 27.9% with the highest open-circuit voltage of 4.94 V. This work establishes a new benchmark for multijunction PVs.

摘要

多结光伏器件(PVs)因其具有超越单结电池辐射极限实现功率转换效率(PCEs)的卓越能力而日益受到关注,对于薄膜器件而言,改进窄带隙(NBG)锡铅钙钛矿至关重要。在此,我们聚焦于理解锡铅钙钛矿前驱体溶液的化学性质,发现Sn(II)物种主导与前驱体和添加剂的相互作用,并揭示了羧酸在调节溶液胶体性质和薄膜结晶方面的独特作用,以及铵在改善薄膜光电性质方面的作用。结合这两个官能团的材料,即氨基酸盐,能显著提高钙钛矿薄膜的半导体质量和均匀性,超过了单独作为分子引入时单个官能团的效果。我们增强后的锡铅钙钛矿层使我们能够分别制造出单结、双结和三结器件功率转换效率分别为23.9%、29.7%(认证值29.26%)和28.7%的太阳能电池。我们的1平方厘米三结器件的功率转换效率为28.4%(认证值27.28%)。封装后的三结电池在环境中进行860小时最大功率点跟踪(MPPT)后仍保持其初始效率的80%。我们进一步制造了四结器件,并获得了27.9% 的功率转换效率以及4.94 V的最高开路电压。这项工作为多结光伏器件建立了新的基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e3/11882461/3913486eba20/41586_2024_8546_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验