Suppr超能文献

ODD-Net:一种用于图像去雾的混合深度学习架构。

ODD-Net: a hybrid deep learning architecture for image dehazing.

作者信息

Asha C S, Siddiq Abu Bakr, Akthar Razeem, Rajan M Ragesh, Suresh Shilpa

机构信息

Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India.

出版信息

Sci Rep. 2024 Dec 23;14(1):30619. doi: 10.1038/s41598-024-82558-6.

Abstract

Haze can significantly reduce visibility and contrast of images captured outdoors, necessitating the enhancement of images. This degradation in image quality can adversely affect various applications, including autonomous driving, object detection, and surveillance, where poor visibility may lead to navigation errors and obscure crucial details. Existing dehazing techniques face several challenges: spatial methods tend to be computationally heavy, transform methods often fall short in quality, hybrid methods can be intricate and demanding, and deep learning methods require extensive datasets and computational power. To overcome these challenges, we present ODD-Net, a hybrid deep learning architecture. Our research introduces a comprehensive data set and an innovative architecture called Atmospheric Light Net (A-Net) to estimate atmospheric light, using dilated convolution, batch normalisation, and ReLU activation functions. Furthermore, we develop T-Net to measure information transmission from objects to the camera, using multiscale convolutions and nonlinear regression to create a transmission map. The integrated architecture combines pre-trained A-Net and T-Net models within the atmospheric scattering model. Comparative analysis shows that ODD-Net provides superior dehazing quality, especially in transmission map estimation and depth measurement, surpassing state-of-the-art methods such as DCP, GMAN, DehazeNet, and LCA. Our quantitative analysis reveals that ODD-Net achieves the highest performance in terms the quality metrics compared. The proposed method demonstrates notable quantitative and qualitative improvements over existing techniques, setting a new standard in image dehazing.

摘要

雾霾会显著降低户外拍摄图像的能见度和对比度,因此需要对图像进行增强处理。图像质量的这种下降会对包括自动驾驶、目标检测和监控在内的各种应用产生不利影响,在这些应用中,能见度差可能会导致导航错误并模糊关键细节。现有的去雾技术面临着几个挑战:空间方法往往计算量很大,变换方法在质量上常常不足,混合方法可能复杂且要求高,而深度学习方法需要大量数据集和计算能力。为了克服这些挑战,我们提出了ODD-Net,一种混合深度学习架构。我们的研究引入了一个综合数据集和一种名为大气光网络(A-Net)的创新架构来估计大气光,使用扩张卷积、批量归一化和ReLU激活函数。此外,我们开发了T-Net来测量从物体到相机的信息传输,使用多尺度卷积和非线性回归来创建传输图。集成架构在大气散射模型中结合了预训练的A-Net和T-Net模型。对比分析表明,ODD-Net提供了卓越的去雾质量,尤其是在传输图估计和深度测量方面,超过了诸如DCP、GMAN、DehazeNet和LCA等现有技术。我们的定量分析表明,在比较的质量指标方面,ODD-Net实现了最高性能。所提出的方法在定量和定性方面都比现有技术有显著改进,为图像去雾设定了新的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1182/11666592/bf54cbde277f/41598_2024_82558_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验