Yang Junjie, Hu Zhe, Li Junjing, Guo Xiaolin, Gao Xiaowei, Liu Jiaxuan, Wang Yaling, Qu Zhiheng, Li Wanchun, Li Zhongqi, Li Wanjing, Huang Yien, Chen Jiali, Wen Hao, Yuan Binke
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China: Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, PR China.
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China: Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, PR China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, PR China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, PR China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, PR China.
Neuroimage. 2025 May 1;311:121203. doi: 10.1016/j.neuroimage.2025.121203. Epub 2025 Apr 10.
Experiments with naturalistic stimuli (e.g., listening to stories or watching movies) are emerging paradigms in brain function research. The content of naturalistic stimuli is rich and continuous. The fMRI signals of naturalistic stimuli are complex and include different components. A major challenge is isolate the stimuli-induced signals while simultaneously tracking the brain's responses to these stimuli in real-time. To this end, we have developed a user-friendly graphical interface toolbox called NaDyNet (Naturalistic Dynamic Network Toolbox), which integrates existing dynamic brain network analysis methods and their improved versions. The main features of NaDyNet are: 1) extracting signals of interest from naturalistic fMRI signals; 2) incorporating six commonly used dynamic analysis methods and three static analysis methods; 3) improved versions of these dynamic methods by adopting inter-subject analysis to eliminate the effects of non-interest signals; 4) performing K-means clustering analysis to identify temporally reoccurring states along with their temporal and spatial attributes; 5) Visualization of spatiotemporal results. We then introduced the rationale for incorporating inter-subject analysis to improve existing dynamic brain network analysis methods and presented examples by analyzing naturalistic fMRI data. We hope that this toolbox will promote the development of naturalistic neuroscience. The toolbox is available at https://github.com/yuanbinke/Naturalistic-Dynamic-Network-Toolbox.
使用自然主义刺激(例如,听故事或看电影)的实验正在成为脑功能研究中的新兴范式。自然主义刺激的内容丰富且连续。自然主义刺激的功能磁共振成像(fMRI)信号很复杂,包括不同的成分。一个主要挑战是在实时跟踪大脑对这些刺激的反应的同时,分离出刺激诱发的信号。为此,我们开发了一个名为NaDyNet(自然主义动态网络工具箱)的用户友好型图形界面工具箱,它整合了现有的动态脑网络分析方法及其改进版本。NaDyNet的主要特点包括:1)从自然主义fMRI信号中提取感兴趣的信号;2)纳入六种常用的动态分析方法和三种静态分析方法;3)通过采用受试者间分析来消除非感兴趣信号的影响,对这些动态方法进行改进;4)进行K均值聚类分析,以识别随时间重复出现的状态及其时间和空间属性;5)时空结果的可视化。然后,我们介绍了纳入受试者间分析以改进现有动态脑网络分析方法的基本原理,并通过分析自然主义fMRI数据给出了示例。我们希望这个工具箱将促进自然主义神经科学的发展。该工具箱可在https://github.com/yuanbinke/Naturalistic-Dynamic-Network-Toolbox获取。