Yan Lang, Chang Liang, Tian Yijun, Hu Jinyan, Cao Zhi, Guo Xiang, Geng Bijiang
Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
Department of Emergency and Critical Care, Shanghai Changzheng Hospital, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, China.
Adv Sci (Weinh). 2025 Feb;12(7):e2410606. doi: 10.1002/advs.202410606. Epub 2024 Dec 24.
Cuproptosis that utilizes copper ionophore to induce programmed cell death holds promise for enhancing the effectiveness of conventional anticancer therapies and triggering efficient adaptive immune responses. However, the non-tumor-specific release of Cu ions can induce cuproptosis and cause irreversible damage to normal tissues. To maximize the therapeutic effects of tumor-specific cuproptosis, this work reports for the first time the regulation of degradation behaviors of Cu-based nanomaterials using graphene quantum dots (GQDs) as a protection layer. The deposition of GQDs not only avoids the degradation of CuO nanocubes under normal physiological conditions, but also sensitizes their sonodynamic activity due to the formation of Z-scheme heterojunctions. The tumor-specific released Cu ions achieve the cascade amplification of reactive oxygen species (ROS) generation through Cu-mediated Fenton-like reaction and Cu-facilitated GSH depletion. More importantly, the immunosuppressive tumor microenvironment (TME) can be reversed by the greatly enhanced ROS levels and high-efficiency cuproptosis, ultimately inducing immunogenic cell death that promotes robust systemic immune responses for the eradication of primary tumors and suppression of distant tumors. This work provides a novel paradigm for the integration of SDT, CDT, cuproptosis, and immunotherapy in a controlled manner to achieve tumor-specific antitumor therapy by controlling the degradation behaviors of Cu-based nanomaterials.
利用铜离子载体诱导程序性细胞死亡的铜死亡有望提高传统抗癌疗法的疗效并引发有效的适应性免疫反应。然而,铜离子的非肿瘤特异性释放会诱导铜死亡并对正常组织造成不可逆的损伤。为了最大化肿瘤特异性铜死亡的治疗效果,这项工作首次报道了使用石墨烯量子点(GQDs)作为保护层来调控铜基纳米材料的降解行为。GQDs的沉积不仅避免了CuO纳米立方体在正常生理条件下的降解,还由于形成Z型异质结而增强了它们的声动力活性。肿瘤特异性释放的铜离子通过铜介导的类芬顿反应和铜促进的谷胱甘肽消耗实现了活性氧(ROS)生成的级联放大。更重要的是,免疫抑制性肿瘤微环境(TME)可以通过大幅提高的ROS水平和高效的铜死亡来逆转,最终诱导免疫原性细胞死亡,促进强大的全身免疫反应以根除原发性肿瘤并抑制远处肿瘤。这项工作提供了一种新的范例,通过控制铜基纳米材料的降解行为,以可控的方式整合声动力疗法(SDT)、化学动力学疗法(CDT)、铜死亡和免疫疗法,实现肿瘤特异性抗肿瘤治疗。