文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

原位构建异质结以调节铜载体的生物降解行为用于肿瘤特异性铜死亡增强的声动力免疫治疗。

In situ construction of heterojunctions to regulate the biodegradation behavior of copper carriers for tumor-specific cuproptosis-enhanced sono-immunotherapy.

作者信息

Cao Xiqian, Mao Lingwei, Tian Yijun, Yan Lang, Geng Bijiang, Zhou Yingtang, Zhu Jiangbo

机构信息

Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China.

National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, China.

出版信息

J Nanobiotechnology. 2025 Mar 25;23(1):246. doi: 10.1186/s12951-025-03334-w.


DOI:10.1186/s12951-025-03334-w
PMID:40128745
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11934600/
Abstract

Cuproptosis, a novel approach utilizing copper carriers to trigger programmed cell death, exhibits promise for enhancing traditional therapies and activating robust adaptive immune responses. However, the uncontrolled release of Cu ions risks triggering cuproptosis in healthy tissues, potentially causing irreversible damage. To address this, we report on the use of a Cu-MOF (copper metal-organic framework) protective layer to regulate the biodegradation of copper-based nanomaterials. In situ formation of Cu-MOF on CuO nanocubes not only stabilizes the material under physiological conditions but also enhances its sonodynamic therapy (SDT) capabilities by establishing a Z-Scheme heterojunction. Upon SDT activation, the targeted Cu ion release at the tumor site triggers a cascade of reactions, generating reactive oxygen species (ROS) via Fenton-like processes and depleting glutathione (GSH). This ROS surge, combined with effective cuproptosis, modulates the immunosuppressive tumor microenvironment, inducing immunogenic cell death to eliminate primary tumors and inhibit metastasis. This study offers a new paradigm for the controlled integration of SDT, chemodynamic therapy (CDT), cuproptosis, and immunotherapy, achieving precise tumor-targeted treatment via controlled copper nanomaterial degradation.

摘要

铜死亡是一种利用铜载体触发程序性细胞死亡的新方法,有望增强传统疗法并激活强大的适应性免疫反应。然而,铜离子的无控释放可能会引发健康组织中的铜死亡,从而可能造成不可逆转的损害。为了解决这个问题,我们报道了使用铜金属有机框架(Cu-MOF)保护层来调节铜基纳米材料的生物降解。在氧化铜纳米立方体上原位形成Cu-MOF不仅能在生理条件下稳定材料,还能通过建立Z型异质结增强其声动力疗法(SDT)能力。在SDT激活后,肿瘤部位的靶向铜离子释放引发一系列反应,通过类芬顿过程产生活性氧(ROS)并消耗谷胱甘肽(GSH)。这种ROS激增与有效的铜死亡相结合,调节免疫抑制性肿瘤微环境,诱导免疫原性细胞死亡以消除原发性肿瘤并抑制转移。本研究为SDT、化学动力疗法(CDT)、铜死亡和免疫疗法的可控整合提供了一种新范式,通过可控的铜纳米材料降解实现精确的肿瘤靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/db38b66c064a/12951_2025_3334_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/ec4849872d0d/12951_2025_3334_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/0c25689ff1fd/12951_2025_3334_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/60fb3e71b313/12951_2025_3334_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/daa610843d4f/12951_2025_3334_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/402f3d7669ff/12951_2025_3334_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/bbc9b4255b34/12951_2025_3334_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/cfc32685683e/12951_2025_3334_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/9099488cd057/12951_2025_3334_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/db38b66c064a/12951_2025_3334_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/ec4849872d0d/12951_2025_3334_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/0c25689ff1fd/12951_2025_3334_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/60fb3e71b313/12951_2025_3334_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/daa610843d4f/12951_2025_3334_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/402f3d7669ff/12951_2025_3334_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/bbc9b4255b34/12951_2025_3334_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/cfc32685683e/12951_2025_3334_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/9099488cd057/12951_2025_3334_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b16/11934600/db38b66c064a/12951_2025_3334_Fig8_HTML.jpg

相似文献

[1]
In situ construction of heterojunctions to regulate the biodegradation behavior of copper carriers for tumor-specific cuproptosis-enhanced sono-immunotherapy.

J Nanobiotechnology. 2025-3-25

[2]
Graphene Quantum Dot Sensitized Heterojunctions Induce Tumor-Specific Cuproptosis to Boost Sonodynamic and Chemodynamic Enhanced Cancer Immunotherapy.

Adv Sci (Weinh). 2025-2

[3]
A metal-organic framework functionalized CaO-based cascade nanoreactor induces synergistic cuproptosis/ferroptosis and Ca overload-mediated mitochondrial damage for enhanced sono-chemodynamic immunotherapy.

Acta Biomater. 2025-1-24

[4]
Tumor Microenvironment Activated Cu Crosslinked Near-Infrared Sonosensitizers for Visualized Cuproptosis-Enhanced Sonodynamic Cancer Immunotherapy.

Adv Sci (Weinh). 2024-11

[5]
A heterojunction-engineering nanodrug with tumor microenvironment responsiveness for tumor-specific cuproptosis and chemotherapy amplified sono-immunotherapy.

Biomaterials. 2025-10

[6]
A p-n heterojunction sonosensitizer for improved sono-immunotherapy via induction of multimodal cell death mechanisms.

Theranostics. 2025-1-27

[7]
Biomimetic gold nanocages incorporating copper-human serum albumin for tumor immunotherapy via cuproptosis-lactate regulation.

J Control Release. 2024-8

[8]
Piezoelectric-mediated two-dimensional copper-based metal-organic framework for synergistic sonodynamic and cuproptosis-driven tumor therapy.

J Colloid Interface Sci. 2025-2

[9]
Synergistic SDT/cuproptosis therapy for liver hepatocellular carcinoma: enhanced antitumor efficacy and specific mechanisms.

J Nanobiotechnology. 2024-12-18

[10]
Dendrimer/metal-phenolic nanocomplexes encapsulating CuO for targeted magnetic resonance imaging and enhanced ferroptosis/cuproptosis/chemodynamic therapy by regulating the tumor microenvironment.

Acta Biomater. 2024-7-15

引用本文的文献

[1]
Mechanism and application of copper-based nanomedicines in activating tumor immunity through oxidative stress modulation.

Front Pharmacol. 2025-7-11

本文引用的文献

[1]
Biomimetic copper-doped polypyrrole nanoparticles induce glutamine metabolism inhibition to enhance breast cancer cuproptosis and immunotherapy.

J Control Release. 2024-7

[2]
Cuproptosis: Advances in Stimulus-Responsive Nanomaterials for Cancer Therapy.

Adv Healthc Mater. 2024-7

[3]
A Self-Amplifying ROS-Responsive Nanoplatform for Simultaneous Cuproptosis and Cancer Immunotherapy.

Adv Sci (Weinh). 2024-6

[4]
Single Atom Catalysts Remodel Tumor Microenvironment for Augmented Sonodynamic Immunotherapy.

Adv Mater. 2024-6

[5]
Elesclomol Loaded Copper Oxide Nanoplatform Triggers Cuproptosis to Enhance Antitumor Immunotherapy.

Adv Sci (Weinh). 2024-5

[6]
Glutathione Induced In situ Synthesis of Cu Single-Atom Nanozymes with Anaerobic Glycolysis Metabolism Interference for Boosting Cuproptosis.

Angew Chem Int Ed Engl. 2024-4-24

[7]
Single-Site Nanozymes with a Highly Conjugated Coordination Structure for Antitumor Immunotherapy via Cuproptosis and Cascade-Enhanced T Lymphocyte Activity.

J Am Chem Soc. 2024-2-14

[8]
Stimulus-Responsive Copper Complex Nanoparticles Induce Cuproptosis for Augmented Cancer Immunotherapy.

Adv Sci (Weinh). 2024-4

[9]
Targeted Delivery of Active Sites by Oxygen Vacancy-Engineered Bimetal Silicate Nanozymes for Intratumoral Aggregation-Potentiated Catalytic Therapy.

ACS Nano. 2024-1-16

[10]
Photoinduced Cuproptosis with Tumor-Specific for Metastasis-Inhibited Cancer Therapy.

Small. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索