Suppr超能文献

用于3D医学图像分割的U型网络双自蒸馏

DUAL SELF-DISTILLATION OF U-SHAPED NETWORKS FOR 3D MEDICAL IMAGE SEGMENTATION.

作者信息

Banerjee Soumyanil, Dong Ming, Glide-Hurst Carri

机构信息

Department of Computer Science, Wayne State University, Detroit, MI, USA.

Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635393. Epub 2024 Aug 22.

Abstract

U-shaped networks and its variants have demonstrated exceptional results for medical image segmentation. In this paper, we propose a novel dual self-distillation (DSD) framework for U-shaped networks for 3D medical image segmentation. DSD distills knowledge from the ground-truth segmentation labels to the decoder layers and also between the encoder and decoder layers of a single U-shaped network. DSD is a generalized training strategy that could be attached to the backbone architecture of any U-shaped network to further improve its segmentation performance. We attached DSD on two state-of-the-art U-shaped backbones, and extensive experiments on two public 3D medical image segmentation datasets demonstrated significant improvement over those backbones, with negligible increase in trainable parameters and training time. The source code is publicly available at https://github.com/soumbane/DualSelfDistillation.

摘要

U型网络及其变体在医学图像分割方面已展现出卓越的成果。在本文中,我们提出了一种用于3D医学图像分割的U型网络的新型双自蒸馏(DSD)框架。DSD将真实分割标签中的知识蒸馏到解码器层,并且也在单个U型网络的编码器和解码器层之间进行知识蒸馏。DSD是一种通用的训练策略,可以附加到任何U型网络的骨干架构上,以进一步提高其分割性能。我们将DSD附加到两个最先进的U型骨干上,并且在两个公共3D医学图像分割数据集上进行的广泛实验表明,相对于那些骨干有显著改进,同时可训练参数和训练时间的增加可忽略不计。源代码可在https://github.com/soumbane/DualSelfDistillation上公开获取。

相似文献

1
DUAL SELF-DISTILLATION OF U-SHAPED NETWORKS FOR 3D MEDICAL IMAGE SEGMENTATION.用于3D医学图像分割的U型网络双自蒸馏
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635393. Epub 2024 Aug 22.
6
Double Similarity Distillation for Semantic Image Segmentation.用于语义图像分割的双相似性蒸馏
IEEE Trans Image Process. 2021;30:5363-5376. doi: 10.1109/TIP.2021.3083113. Epub 2021 Jun 3.

本文引用的文献

1
The Medical Segmentation Decathlon.医学分割十项全能
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.
2
Efficient Medical Image Segmentation Based on Knowledge Distillation.基于知识蒸馏的高效医学图像分割。
IEEE Trans Med Imaging. 2021 Dec;40(12):3820-3831. doi: 10.1109/TMI.2021.3098703. Epub 2021 Nov 30.
6
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验