Suppr超能文献

基于U型网络中双重自蒸馏的医学图像体积分割

Volumetric medical image segmentation through dual self-distillation in U-shaped networks.

作者信息

Banerjee Soumyanil, Summerfield Nicholas, Dong Ming, Glide-Hurst Carri

出版信息

IEEE Trans Biomed Eng. 2025 May 5;PP. doi: 10.1109/TBME.2025.3566995.

Abstract

U-shaped networks and its variants have demonstrated exceptional results for medical image segmentation. In this paper, we propose a novel dual self-distillation (DSD) framework in U-shaped networks for volumetric medical image segmentation. DSD distills knowledge from the ground-truth segmentation labels to the decoder layers. Additionally, DSD also distills knowledge from the deepest decoder and encoder layer to the shallower decoder and encoder layers respectively of a single U-shaped network. DSD is a general training strategy that could be attached to the backbone architecture of any U-shaped network to further improve its segmentation performance. We attached DSD on several state-of-the-art U-shaped backbones, and extensive experiments on various public 3D medical image segmentation datasets (cardiac substructure, brain tumor and Hippocampus) demonstrated significant improvement over the same backbones without DSD. On average, after attaching DSD to the U-shaped backbones, we observed an increase of 2.82%, 4.53% and 1.3% in Dice similarity score, a decrease of 7.15 mm, 6.48 mm and 0.76 mm in the Hausdorff distance, for cardiac substructure, brain tumor and Hippocampus segmentation, respectively. These improvements were achieved with negligible increase in the number of trainable parameters and training time. Our proposed DSD framework also led to significant qualitative improvements for cardiac substructure, brain tumor and Hippocampus segmentation over the U-shaped backbones. The source code is publicly available at https://github.com/soumbane/DualSelfDistillation.

摘要

U型网络及其变体在医学图像分割方面已展现出卓越的成果。在本文中,我们提出了一种用于容积医学图像分割的U型网络中的新型双自蒸馏(DSD)框架。DSD将真实分割标签中的知识蒸馏到解码器层。此外,DSD还分别将单个U型网络中最深的解码器和编码器层的知识蒸馏到较浅的解码器和编码器层。DSD是一种通用的训练策略,可以附加到任何U型网络的骨干架构上,以进一步提高其分割性能。我们将DSD附加到几个先进的U型骨干网络上,并且在各种公共3D医学图像分割数据集(心脏亚结构、脑肿瘤和海马体)上进行的广泛实验表明,与没有DSD的相同骨干网络相比有显著改进。平均而言,在将DSD附加到U型骨干网络后,我们观察到在心脏亚结构、脑肿瘤和海马体分割中,Dice相似性分数分别提高了2.82%、4.53%和1.3%,豪斯多夫距离分别减少了7.15毫米、6.48毫米和0.76毫米。这些改进是在可训练参数数量和训练时间增加可忽略不计 的情况下实现的。我们提出的DSD框架在心脏亚结构、脑肿瘤和海马体分割方面相对于U型骨干网络也带来了显著的定性改进。源代码可在https://github.com/soumbane/DualSelfDistillation上公开获取。

相似文献

2
DUAL SELF-DISTILLATION OF U-SHAPED NETWORKS FOR 3D MEDICAL IMAGE SEGMENTATION.用于3D医学图像分割的U型网络双自蒸馏
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635393. Epub 2024 Aug 22.

本文引用的文献

1
DUAL SELF-DISTILLATION OF U-SHAPED NETWORKS FOR 3D MEDICAL IMAGE SEGMENTATION.用于3D医学图像分割的U型网络双自蒸馏
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635393. Epub 2024 Aug 22.
2
MISSU: 3D Medical Image Segmentation via Self-Distilling TransUNet.MISSU:基于自蒸馏 TransUNet 的 3D 医学图像分割。
IEEE Trans Med Imaging. 2023 Sep;42(9):2740-2750. doi: 10.1109/TMI.2023.3264433. Epub 2023 Aug 31.
4
The Medical Segmentation Decathlon.医学分割十项全能
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.
5
Efficient Medical Image Segmentation Based on Knowledge Distillation.基于知识蒸馏的高效医学图像分割。
IEEE Trans Med Imaging. 2021 Dec;40(12):3820-3831. doi: 10.1109/TMI.2021.3098703. Epub 2021 Nov 30.
6
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
9
Self-Distillation: Towards Efficient and Compact Neural Networks.自蒸馏:走向高效紧凑的神经网络。
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4388-4403. doi: 10.1109/TPAMI.2021.3067100. Epub 2022 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验