Suppr超能文献

surtvep:一个用于估计时变效应的R软件包。

surtvep: An R package for estimating time-varying effects.

作者信息

Luo Lingfeng, Wu Wenbo, Taylor Jeremy M G, Kang Jian, Kleinsasser Michael J, He Kevin

机构信息

Department of Biostatistics, School of Public Health, University of Michigan.

Departments of Population Health and Medicine, New York University Grossman School of Medicine.

出版信息

J Open Source Softw. 2024;9(98). doi: 10.21105/joss.05688. Epub 2024 Jun 28.

Abstract

The surtvep package is an open-source software designed for estimating time-varying effects in survival analysis using the Cox non-proportional hazards model in R. With the rapid increase in large-scale time-to-event data from national disease registries, detecting and accounting for time-varying effects in medical studies have become crucial. Current software solutions often face computational issues such as memory limitations when handling large datasets. Furthermore, modeling time-varying effects for time-to-event data can be challenging due to small at-risk sets and numerical instability near the end of the follow-up period. surtvep addresses these challenges by implementing a computationally efficient Kronecker product-based proximal algorithm, supporting both unstratified and stratified models. The package also incorporates P-spline and smoothing spline penalties to improve estimation (Eilers & Marx, 1996). Cross-validation and information criteria are available to determine the optimal tuning parameters. Parallel computation is enabled to further enhance computational efficiency. A variety of operating characteristics are provided, including estimated time-varying effects, confidence intervals, hypothesis testing, and estimated hazard functions and survival probabilities. The surtvep package thus offers a comprehensive and flexible solution to analyzing large-scale time-to-event data with dynamic effect trajectories.

摘要

surtvep软件包是一款开源软件,旨在使用R语言中的Cox非比例风险模型估计生存分析中的时变效应。随着国家疾病登记处大规模事件发生时间数据的迅速增加,在医学研究中检测和考虑时变效应变得至关重要。当前的软件解决方案在处理大型数据集时常常面临诸如内存限制等计算问题。此外,由于风险集合较小以及随访期结束时的数值不稳定性,对事件发生时间数据进行时变效应建模可能具有挑战性。surtvep通过实施一种基于克罗内克积的计算高效的近端算法来应对这些挑战,该算法支持未分层和分层模型。该软件包还纳入了P样条和平滑样条惩罚以改进估计(艾勒斯和马克思,1996)。可使用交叉验证和信息准则来确定最佳调优参数。启用并行计算以进一步提高计算效率。提供了各种操作特性,包括估计的时变效应、置信区间、假设检验以及估计的风险函数和生存概率。因此,surtvep软件包为分析具有动态效应轨迹的大规模事件发生时间数据提供了一个全面且灵活的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/11664633/2152197f6049/nihms-2042482-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验