Suppr超能文献

使用双联抗血小板治疗对冠状动脉旁路移植术后出血风险的准确预测:机器学习模型与PRECISE-DAPT评分的比较

Accurate prediction of bleeding risk after coronary artery bypass grafting with dual antiplatelet therapy: A machine learning model vs. the PRECISE-DAPT score.

作者信息

Yang Yi, Yan Yuqing, Zhou Zhou, Zhang Jifan, Han Haolong, Zhang Weihui, Wang Xia, Chen Chen, Ge Weihong, Pan Jun, Zou Jianjun, Xu Hang

机构信息

Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.

School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China.

出版信息

Int J Cardiol. 2025 Feb 15;421:132925. doi: 10.1016/j.ijcard.2024.132925. Epub 2024 Dec 22.

Abstract

BACKGROUND

Dual antiplatelet therapy (DAPT) after coronary artery bypass grafting (CABG), although might be protective for ischemic events, can lead to varying degrees of bleeding, resulting in serious clinical events, including death. This study aims to develop accurate and scalable predictive tools for early identification of bleeding risks during the DAPT period post-CABG, comparing them with the PRECISE-DAPT score.

METHODS

Clinical data were collected from patients who underwent isolated CABG at Nanjing Drum Tower Hospital between June 2021 and December 2023. The dataset was split into derivation and validation cohorts at a 7:3 ratio. Machine learning models were developed to predict bleeding within six months post-CABG in DAPT patients and tested in a temporal external validation cohort. The SHapley Additive exPlanations method visualized variable importance regarding outcomes. The performance of the PRECISE-DAPT score was also validated in this cohort.

RESULTS

Among 561 enrolled patients, 165 (29.4 %) experienced bleeding events, with 49 (8.7 %) cases being significant. In the validation cohort, eXtreme gradient boosting (XGB) achieved the highest area under the receiver operating characteristic curve (0.915) and precision-recall curve (0.692). Compared to PRECISE-DAPT, XGB showed no difference in AUROC (p = 0.808) but had a higher AUPRC (p = 0.009). In the temporal external validation cohort, the XGB model has an AUROC of 0.926 and an AUPRC of 0.703. We developed a dynamic high-accuracy bleeding risk calculator based on the XGB model and created a mobile-friendly QR code for easy access to this tool.

CONCLUSION

Bleeding risk during DAPT in post-CABG patients can be reliably predicted using selected baseline features. The XGB model outperforms the Precise-Dapt model, showing better precision and recall.

摘要

背景

冠状动脉旁路移植术(CABG)后双重抗血小板治疗(DAPT)虽可能对缺血事件具有保护作用,但会导致不同程度的出血,引发包括死亡在内的严重临床事件。本研究旨在开发准确且可扩展的预测工具,用于早期识别CABG术后DAPT期间的出血风险,并将其与PRECISE-DAPT评分进行比较。

方法

收集2021年6月至2023年12月在南京鼓楼医院接受单纯CABG治疗患者的临床数据。数据集按7:3的比例分为推导队列和验证队列。开发机器学习模型以预测DAPT患者CABG术后六个月内的出血情况,并在时间外部验证队列中进行测试。SHapley加性解释方法直观显示了各变量对结果的重要性。PRECISE-DAPT评分的性能也在该队列中得到验证。

结果

在561例入组患者中,165例(29.4%)发生出血事件,其中49例(8.7%)为严重出血。在验证队列中,极端梯度提升(XGB)模型在受试者工作特征曲线下面积(0.915)和精确召回率曲线下面积(0.692)方面表现最佳。与PRECISE-DAPT相比,XGB模型的受试者工作特征曲线下面积无差异(p = 0.808),但精确召回率曲线下面积更高(p = 0.009)。在时间外部验证队列中,XGB模型的受试者工作特征曲线下面积为0.926,精确召回率曲线下面积为0.703。我们基于XGB模型开发了动态高精度出血风险计算器,并创建了便于手机访问的二维码以方便使用该工具。

结论

利用选定的基线特征可可靠预测CABG术后患者DAPT期间的出血风险。XGB模型优于Precise-Dapt模型,具有更好的精确率和召回率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验