Suppr超能文献

通过人工智能驱动的多参数合理设计增强Taq聚合酶中的逆转录酶功能。

Enhancing the reverse transcriptase function in Taq polymerase via AI-driven multiparametric rational design.

作者信息

Tomilova Yulia E, Russkikh Nikolay E, Yi Igor M, Shaburova Elizaveta V, Tomilov Viktor N, Pyrinova Galina B, Brezhneva Svetlana O, Tikhonyuk Olga S, Gololobova Nadezhda S, Popichenko Dmitriy V, Arkhipov Maxim O, Bryzgalov Leonid O, Brenner Evgeniy V, Artyukh Anastasia A, Shtokalo Dmitry N, Antonets Denis V, Ivanov Mikhail K

机构信息

AO Vector-Best, Novosibirsk, Russia.

AcademGene LLC, Novosibirsk, Russia.

出版信息

Front Bioeng Biotechnol. 2024 Dec 10;12:1495267. doi: 10.3389/fbioe.2024.1495267. eCollection 2024.

Abstract

INTRODUCTION

Modification of natural enzymes to introduce new properties and enhance existing ones is a central challenge in bioengineering. This study is focused on the development of Taq polymerase mutants that show enhanced reverse transcriptase (RTase) activity while retaining other desirable properties such as fidelity, 5'- 3' exonuclease activity, effective deoxyuracyl incorporation, and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective was to use AI-driven rational design combined with multiparametric wet-lab analysis to identify and validate Taq polymerase mutants with an optimal combination of these properties.

METHODS

The experimental procedure was conducted in several stages: 1) On the basis of a foundational paper, we selected 18 candidate mutations known to affect RTase activity across six sites. These candidates, along with the wild type, were assessed in the wet lab for multiple properties to establish an initial training dataset. 2) Using embeddings of Taq polymerase variants generated by a protein language model, we trained a Ridge regression model to predict multiple enzyme properties. This model guided the selection of 14 new candidates for experimental validation, expanding the dataset for further refinement. 3) To better manage risk by assessing confidence intervals on predictions, we transitioned to Gaussian process regression and trained this model on an expanded dataset comprising 33 data points. 4) With this enhanced model, we conducted an screen of over 18 million potential mutations, narrowing the field to 16 top candidates for comprehensive wet-lab evaluation.

RESULTS AND DISCUSSION

This iterative, data-driven strategy ultimately led to the identification of 18 enzyme variants that exhibited markedly improved RTase activity while maintaining a favorable balance of other key properties. These enhancements were generally accompanied by lower K, moderately reduced fidelity, and greater tolerance to noncanonical substrates, thereby illustrating a strong interdependence among these traits. Several enzymes validated via this procedure were effective in single-enzyme real-time reverse-transcription PCR setups, implying their utility for the development of new tools for real-time reverse-transcription PCR technologies, such as pathogen RNA detection and gene expression analysis. This study illustrates how AI can be effectively integrated with experimental bioengineering to enhance enzyme functionality systematically. Our approach offers a robust framework for designing enzyme mutants tailored to specific biotechnological applications. The results of our biological activity predictions for mutated Taq polymerases can be accessed at https://huggingface.co/datasets/nerusskikh/taqpol_insilico_dms.

摘要

引言

对天然酶进行改造以引入新特性并增强现有特性是生物工程中的一项核心挑战。本研究聚焦于开发具有增强逆转录酶(RTase)活性的Taq聚合酶突变体,同时保留其他理想特性,如保真度、5'-3'核酸外切酶活性、有效的脱氧尿嘧啶掺入以及对含锁核酸(LNA)底物的耐受性。我们的目标是利用人工智能驱动的理性设计结合多参数湿实验室分析,来识别和验证具有这些特性最佳组合的Taq聚合酶突变体。

方法

实验过程分几个阶段进行:1)基于一篇基础论文,我们从六个位点中选择了18个已知会影响RTase活性的候选突变。这些候选突变以及野生型在湿实验室中针对多种特性进行评估,以建立初始训练数据集。2)利用蛋白质语言模型生成的Taq聚合酶变体的嵌入,我们训练了一个岭回归模型来预测多种酶特性。该模型指导选择了14个新的候选突变进行实验验证,从而扩展数据集以进一步优化。3)为了通过评估预测的置信区间更好地管理风险,我们转向高斯过程回归,并在包含33个数据点的扩展数据集上训练该模型。4)利用这个增强模型,我们对超过1800万个潜在突变进行了筛选,将范围缩小到16个顶级候选突变进行全面的湿实验室评估。

结果与讨论

这种迭代的、数据驱动的策略最终导致识别出18种酶变体,它们表现出显著提高的RTase活性,同时保持其他关键特性的良好平衡。这些增强通常伴随着较低的K值、适度降低的保真度以及对非规范底物更高的耐受性,从而说明了这些特性之间的强烈相互依赖性。通过该程序验证的几种酶在单酶实时逆转录PCR设置中有效,这意味着它们可用于开发实时逆转录PCR技术的新工具,如病原体RNA检测和基因表达分析。本研究说明了人工智能如何能有效地与实验生物工程相结合,以系统地增强酶的功能。我们的方法为设计适用于特定生物技术应用的酶突变体提供了一个强大的框架。我们对突变Taq聚合酶的生物活性预测结果可在https://huggingface.co/datasets/nerusskikh/taqpol_insilico_dms上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c0/11666352/543b8ef14851/fbioe-12-1495267-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验