Chauca-Cerrutti Alex, Inga Marianela, Pasquel-Reátegui José Luis, Betalleluz-Pallardel Indira, Puma-Isuiza Gustavo
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
Grupo de Investigación en Ingeniería y Tecnología Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín (UNSM), Tarapoto, San Martin, Peru.
Front Chem. 2024 Dec 10;12:1491479. doi: 10.3389/fchem.2024.1491479. eCollection 2024.
When processing lucuma (), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact. LS was previously characterized, and the extraction parameters were optimized using a Box-Behnken design, considering temperature (40-60°C), pressure (100-300 bar), and CO flow rate (3-7 mL/min), applying the response surface methodology (RSM) and neural networks with genetic algorithm (ANN+GA). The optimal parameters were 45°C, 300 bar, and 6 mL/min, obtaining 97.35% of the total oil content. The RSM and ANN+GA models showed R values of 0.9891 and 0.9999 respectively, indicating that both models exhibited a good fit to the experimental data. However, ANN+GA provided a greater proportion of the total variability, which facilitates the identification of the optimal parameters for the extraction of oil from lucuma seeds. Compared to the Soxhlet method, the LSO obtained by SCF presented better acidity (4.127 mg KOH/g), iodine (100.294 g I/100 g), and refraction indices (1.4710), as well as to a higher content of mono- and polyunsaturated fatty acids. Supercritical CO extraction is presented as a sustainable green alternative to Soxhlet extraction for extracting oil from lucuma seed due to its high extraction efficiency and similar fatty acid profile.
在加工番荔枝()时,会产生如外壳和种子等废料,这些废料是生物活性化合物的来源。最近,番荔枝种子(LS),尤其是其含油部分,因其含有植物甾醇和生育酚而受到研究,这些都是具有健康益处的强大抗氧化剂。本研究提出使用超临界流体(SCF)提取番荔枝籽油(LSO),以提高提取物的质量并将环境影响降至最低。此前已对LS进行了表征,并使用Box-Behnken设计优化提取参数,考虑温度(40 - 60°C)、压力(100 - 300 bar)和CO流速(3 - 7 mL/min),应用响应面法(RSM)和带有遗传算法的神经网络(ANN + GA)。最佳参数为45°C、300 bar和6 mL/min,总油含量达到97.35%。RSM和ANN + GA模型的R值分别为0.9891和0.9999,表明这两个模型都与实验数据拟合良好。然而,ANN + GA解释了更大比例的总变异性,这有助于确定从番荔枝种子中提取油的最佳参数。与索氏提取法相比,通过SCF获得的LSO具有更好的酸度(4.127 mg KOH/g)、碘值(100.294 g I/100 g)和折光指数(1.4710),以及更高含量的单不饱和脂肪酸和多不饱和脂肪酸。由于其高提取效率和相似的脂肪酸谱,超临界CO提取法是一种可持续的绿色替代方法,可用于从番荔枝种子中提取油,以替代索氏提取法。