Suppr超能文献

利用时空网络模型和气候数据评估孟加拉国登革热传播风险。

Risk Assessment of Dengue Transmission in Bangladesh Using a Spatiotemporal Network Model and Climate Data.

机构信息

1Department of Electrical and Computer Engineering, College of Engineering, Kansas State University, Manhattan, Kansas.

2United States Department of Agriculture, Arthropod-borne Animal Diseases Research, Manhattan, Kansas.

出版信息

Am J Trop Med Hyg. 2021 Jan 18;104(4):1444-1455. doi: 10.4269/ajtmh.20-0444.

Abstract

Vector-borne disease risk assessment is crucial to optimize surveillance, preventative measures (vector control), and resource allocation (medical supplies). High arthropod abundance and host interaction strongly correlate to vector-borne pathogen transmission. Increasing host density and movement increases the possibility of local and long-distance pathogen transmission. Therefore, we developed a risk-assessment framework using climate (average temperature and rainfall) and host demographic (host density and movement) data, particularly suitable for regions with unreported or underreported incidence data. This framework consisted of a spatiotemporal network-based approach coupled with a compartmental disease model and nonhomogeneous Gillespie algorithm. The correlation of climate data with vector abundance and host-vector interactions is expressed as vectorial capacity-a parameter that governs the spreading of infection from an infected host to a susceptible one via vectors. As an example, the framework is applied for dengue in Bangladesh. Vectorial capacity is inferred for each week throughout a year using average monthly temperature and rainfall data. Long-distance pathogen transmission is expressed with human movement data in the spatiotemporal network. We have identified the spatiotemporal suitability of dengue spreading in Bangladesh as well as the significant-incidence window and peak-incidence period. Analysis of yearly dengue data variation suggests the possibility of a significant outbreak with a new serotype introduction. The outcome of the framework comprised spatiotemporal suitability maps and probabilistic risk maps for spatial infection spreading. This framework is capable of vector-borne disease risk assessment without historical incidence data and can be a useful tool for preparedness with accurate human movement data.

摘要

虫媒疾病风险评估对于优化监测、预防措施(病媒控制)和资源分配(医疗用品)至关重要。节肢动物的丰富度和宿主的相互作用与虫媒病原体的传播密切相关。宿主密度和移动性的增加增加了局部和远距离病原体传播的可能性。因此,我们开发了一种风险评估框架,该框架使用气候(平均温度和降雨量)和宿主人口统计学(宿主密度和移动性)数据,特别适用于发病率数据未报告或报告不足的地区。该框架由基于时空网络的方法与疾病 compartment 模型和非均匀 Gillespie 算法耦合而成。气候数据与媒介丰度和宿主媒介相互作用的相关性表现为媒介效能——一个通过媒介从感染宿主传播感染给易感宿主的参数。例如,该框架应用于孟加拉国的登革热。使用每月平均温度和降雨量数据,推断全年每周的媒介效能。时空网络中的人类移动数据表示远距离病原体传播。我们确定了孟加拉国登革热传播的时空适宜性,以及显著发病窗口和发病高峰期。对每年登革热数据变化的分析表明,随着新血清型的引入,有可能发生重大疫情。该框架的结果包括空间感染传播的时空适宜性地图和概率风险地图。该框架能够在没有历史发病率数据的情况下进行虫媒疾病风险评估,并在有准确的人类移动数据的情况下为做好准备提供有用的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验